Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions

28.11.2013

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- ullet Other computation models: e.g. Büchi Automata, λ -calculus

Until now

We showed that:

- LOOP \subseteq WHILE = GOTO \subseteq TM
- WHILE = GOTO \subsetneq WHILE^{part} = GOTO^{part} \subseteq TM^{part}
- LOOP \neq TM

Still to show:

- \bullet TM \subseteq WHILE
- \bullet TM^{part} \subseteq WHILE^{part}

For proving this, another model of computation will be used: recursive functions

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- ullet Other computation models: e.g. Büchi Automata, λ -calculus

- Introduction/Motivation
- Primitive recursive functions

$$\mapsto \mathcal{P}$$

- $\mathcal{P} = \mathsf{LOOP}$
- μ -recursive functions

$$\mapsto F_{\mu}$$

- $F_{\mu} = \mathsf{WHILE}$
- Summary

Motivation

Functions as model of computation (without an underlying machine model)

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable

(We consider functions $f: \mathbb{N}^k \to \mathbb{N}, k \geq 0$)

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable

(We consider functions $f: \mathbb{N}^k \to \mathbb{N}, k \geq 0$)

Questions

- Which are the atomic functions?
- Which combinations are possible?

The following functions are primitive recursive and μ -recursive:

The following functions are primitive recursive and μ -recursive:

The constant null

$$0:\mathbb{N}^0 \to \mathbb{N}$$
 with $0()=0$

The following functions are primitive recursive and μ -recursive:

The constant null

$$0:\mathbb{N}^0 \to \mathbb{N}$$
 with $0()=0$

Successor function

$$+1:\mathbb{N}^1 o\mathbb{N}$$
 with $+1(n)=n+1$ for all $n\in\mathbb{N}$

The following functions are primitive recursive and μ -recursive:

The constant null

$$0:\mathbb{N}^0 \to \mathbb{N}$$
 with $0()=0$

Successor function

$$+1:\mathbb{N}^1 o\mathbb{N}$$
 with $+1(n)=n+1$ for all $n\in\mathbb{N}$

Projection function

$$\pi_i^k: \mathbb{N}^k o \mathbb{N} \text{ with } \pi_i^k(n_1, \ldots, n_k) = n_i$$

The following functions are primitive recursive and μ -recursive:

The constant null

$$0:\mathbb{N}^0 \to \mathbb{N}$$
 with $0()=0$

Successor function

$$+1:\mathbb{N}^1 o\mathbb{N}$$
 with $+1(n)=n+1$ for all $n\in\mathbb{N}$

Projection function

$$\pi_i^k: \mathbb{N}^k o \mathbb{N} \text{ with } \pi_i^k(n_1, \ldots, n_k) = n_i$$

Notation:

We will write **n** for the tuple (n_1, \ldots, n_k) , $k \geq 0$.

Recursive functions: Composition

Composition:

If the functions: $g: \mathbb{N}^r \to \mathbb{N}$ $r \geq 1$

 $h_1: \mathbb{N}^k \to \mathbb{N}, \ldots, h_r: \mathbb{N}^k \to \mathbb{N}$ $k \geq 0$

are primitive recursive resp. $\mu\text{-recursive}$, then

 $f: \mathbb{N}^k \to \mathbb{N}$

defined for every $\mathbf{n} \in \mathbb{N}^k$ by:

$$f(\mathbf{n}) = g(h_1(\mathbf{n}), \ldots, h_r(\mathbf{n}))$$

is also primitive recursive resp. μ -recursive.

Notation without arguments: $f = g \circ (h_1, \ldots, h_r)$

- Introduction/Motivation
- Primitive recursive functions

$$\mapsto \mathcal{P}$$

- $\mathcal{P} = LOOP$
- μ -recursive functions

$$\mapsto F_{\mu}$$

- $F_{\mu} = \mathsf{WHILE}$
- Summary

Primitive recursion

If the functions

$$g: \mathbb{N}^k \to \mathbb{N}$$
 $(k \ge 0)$
 $h: \mathbb{N}^{k+2} \to \mathbb{N}$

are primitive recursive, then the function

$$f: \mathbb{N}^{k+1} o \mathbb{N}$$
 with $f(\mathbf{n}, 0) = g(\mathbf{n})$ $f(\mathbf{n}, m+1) = h(\mathbf{n}, m, f(\mathbf{n}, m))$

is also primitive recursive.

Primitive recursion

If the functions

$$g: \mathbb{N}^k \to \mathbb{N}$$
 $(k \ge 0)$
 $h: \mathbb{N}^{k+2} \to \mathbb{N}$

are primitive recursive, then the function

$$f: \mathbb{N}^{k+1} o \mathbb{N}$$
 with $f(\mathbf{n}, 0) = g(\mathbf{n})$ $f(\mathbf{n}, m+1) = h(\mathbf{n}, m, f(\mathbf{n}, m))$

is also primitive recursive.

Notation without arguments: f = PR[g, h]

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null 0
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null 0
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null 0
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- **Primitive recursion:** The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null 0
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- **Primitive recursion:** The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Notation: P = The set of all primitive recursive functions

$$f(n) = n + c$$

$$f(n) = n$$

$$f(n,m)=n+m$$

$$f(n,m)=n-1$$

$$f(n,m)=n-m$$

$$f(n,m)=n*m$$

$$f(n) = n + c$$
, for $c \in \mathbb{N}$, $c > 0$

$$f(n) = n + c$$
, for $c \in \mathbb{N}$, $c > 0$
$$f(n) = \underbrace{(+1)(...((+1)(n)))}_{c \text{ times}}$$

$$f(n) = n + c$$
, for $c \in \mathbb{N}$, $c > 0$

$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$$

$$f(n)=n+c$$
, for $c\in\mathbb{N},c>0$
$$f=\underbrace{(+1)\circ\cdots\circ(+1)}_{c\ \text{times}}$$

$$f: \mathbb{N} \to \mathbb{N}$$
, with $f(n) = n$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$$

$$f=\pi_1^1$$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$$

$$f=\pi_1^1$$

$$f(n,m)=n+m$$

$$f(n)=n+c$$
, for $c\in\mathbb{N},c>0$
$$f=\underbrace{(+1)\circ\cdots\circ(+1)}_{c \text{ times}}$$

$$f=\pi_1^1$$

$$f(n, m) = n + m$$

 $f(n, 0) = n$
 $f(n, m + 1) = (+1)(f(n, m))$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$$

$$f=\pi_1^1$$

$$f(n,m)=n+m$$

$$f(n,0) = n$$
 $g(n) = n$ $g = \pi_1^1$ $f(n,m+1) = (+1)(f(n,m))$ $h(n,m,k) = +1(k)$ $h = (+1) \circ \pi_3^3$

$$f(n)=n+c$$
, for $c\in\mathbb{N},c>0$
$$f=\underbrace{(+1)\circ\cdots\circ(+1)}_{c\ \text{times}}$$

$$f=\pi_1^1$$

$$f(n,m)=n+m$$

$$f(n,0) = n$$
 $g(n) = n$ $g = \pi_1^1$ $f(n,m+1) = (+1)(f(n,m))$ $h(n,m,k) = +1(k)$ $h = (+1) \circ \pi_3^3$

$$f=\mathcal{PR}[\pi_1^1$$
 , $(+1)\circ\pi_3^3]$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$$

$$f=\pi_1^1$$

$$f(n,m)=n+m$$

$$f=\mathcal{PR}[\pi_1^1,(+1)\circ\pi_3^3]$$

$$f(n)=n-1$$

$$f(n)=n-1$$

$$f(0) = 0$$

$$f(n+1)=n$$

$$f(n) = n - 1$$
 $f(0) = 0$ $g(0) = 0$ $g = 0$ $f(n+1) = n$ $h(n,k) = n$ $h = \pi_1^2$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n,m)=n-m$$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f(n, 0) = n$$

$$g(n) = n$$

$$g = \pi_1^1$$

$$f(n, m + 1) = f(n, m) - 1$$

$$h(n, m, k) = k - 1$$

$$h = (-1) \circ \pi_3^3$$

 $f = \mathcal{PR}[\pi_1^1, (-1) \circ \pi_3^3]$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f=\mathcal{PR}[\pi_1^1$$
 , $(-1)\circ\pi_3^3]$

$$f(n, m) = n * m$$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f = \mathcal{PR}[\pi_1^1, (-1) \circ \pi_3^3]$$

$$f(n, m) = n * m$$

$$f(n, 0) = 0 \qquad g(n) = 0 \qquad g = 0$$

$$f(n, m + 1) = f(n, m) + n \qquad h(n, m, k) = k + n \qquad h = + \circ (\pi_3^3, \pi_1^3)$$

 $f = \mathcal{PR}[0, + \circ (\pi_3^3, \pi_1^3)]$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n,m)=n-m$$

$$f=\mathcal{PR}[\pi_1^1$$
 , $(-1)\circ\pi_3^3]$

$$f(n, m) = n * m$$

$$f = \mathcal{PR}[0, + \circ (\pi_3^3, \pi_1^3)]$$

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

- Re-ordering
- Omitting
- Repeating

of arguments when composing functions.

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

- Re-ordering
- Omitting
- Repeating

of arguments when composing functions.

Proof: (Idea)

A tuple of arguments $\mathbf{n'} = (n_{i_1}, \dots, n_{i_k})$ obtained from $\mathbf{n} = (n_1, \dots, n_k)$ by re-ordering, omitting or repeating components can be represented as:

$$\mathbf{n'} = (\pi_{i_1}^k(\mathbf{n}), \ldots, \pi_{i_k}^k(\mathbf{n}))$$

Additional Arguments

Lemma. Assume $f: \mathbb{N}^k \to \mathbb{N}$ is primitive recursive.

Then, for every $l \in \mathbb{N}$, the function $f' : \mathbb{N}^k \times \mathbb{N}^l \to \mathbb{N}$ defined for every $\mathbf{n} \in \mathbb{N}^k$ and every $\mathbf{m} \in \mathbb{N}^l$ by:

$$f'(\mathbf{n}, \mathbf{m}) = f(\mathbf{n})$$

is primitive recursive.

Additional Arguments

Lemma. Assume $f: \mathbb{N}^k \to \mathbb{N}$ is primitive recursive.

Then, for every $l \in \mathbb{N}$, the function $f' : \mathbb{N}^k \times \mathbb{N}^p \to \mathbb{N}$ defined for every $\mathbf{n} \in \mathbb{N}^k$ and every $\mathbf{m} \in \mathbb{N}^p$ by:

$$f'(\mathbf{n}, \mathbf{m}) = f(\mathbf{n})$$

is primitive recursive.

Proof:

Case 1: k = 0, i.e. f is a constant. Then $f^1 : \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ with $f^1(\mathbf{n}, m) = f(\mathbf{n})$ for all $m \in \mathbb{N}$ can be expressed by primitive recursion as follows:

$$f^{1}(0) = f$$
 $f^{1}(n+1) = f^{1}(n) = \pi_{2}^{2}(n, f^{1}(n))$ $f^{1} = \mathcal{PR}[f, \pi_{2}^{2}]$

By iterating this construction p times we obtain extensions f^2, f^3, \ldots, f^p with $2, 3, \ldots p$ additional arguments. The function f' is f^p .

Case 2:
$$k' \neq 0$$
. Let $\mathbf{n} = (n_1, \dots, n_k, m_1, \dots, m_p)$
Then $f'(\mathbf{n}) = f(\pi_1^{k+p}(\mathbf{n}), \dots, \pi_k^{k+p}(\mathbf{n})) = f \circ (\pi_1^{k+p}, \dots, \pi_k^{k+p})$.

Case distinction

Lemma (Case distinction is primitive recursive)

- If g_i , h_i $(1 \le i \le r)$ are primitive recursive functions, and
 - for every n there exists a unique i with $h_i(n) = 0$

then the function *f* defined by:

$$f(n) = \left\{ egin{array}{ll} g_1(n) & ext{if } h_1(n) = 0 \ & \dots & \ & \ g_r(n) & ext{if } h_r(n) = 0 \end{array}
ight.$$

is primitive recursive.

Case distinction

Lemma (Case distinction is primitive recursive)

- If \bullet g_i , h_i $(1 \le i \le r)$ are primitive recursive functions, and
 - for every n there exists a unique i with $h_i(n) = 0$

then the function f defined by:

$$f(n) =$$

$$\begin{cases} g_1(n) & \text{if } h_1(n) = 0 \\ \dots & \\ g_r(n) & \text{if } h_r(n) = 0 \end{cases}$$

is primitive recursive.

Proof:
$$f(n) = g_1(n) * (1 - h_1(n)) + \cdots + g_r(n) * (1 - h_r(n))$$

Sums and products

Theorem

If $g: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ is a primitive recursive function then the following functions $f_1, f_2: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ are also primitive recursive:

$$f_1(\mathbf{n}, m) =$$

$$\begin{cases}
0 & \text{if } m = 0 \\
\sum_{i < m} g(\mathbf{n}, i) & \text{if } m > 0
\end{cases}$$

$$f_2(\mathbf{n}, m) =$$

$$\begin{cases}
1 & \text{if } m = 0 \\
\prod_{i < m} g(\mathbf{n}, i) & \text{if } m > 0
\end{cases}$$

Sums and products

Theorem

If $g: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ is a primitive recursive function then the following functions $f_1, f_2: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ are also primitive recursive:

$$f_1(\mathbf{n}, m) = \begin{cases} 0 & \text{if } m = 0 \\ \sum_{i < m} g(\mathbf{n}, i) & \text{if } m > 0 \end{cases}$$

$$f_2(\mathbf{n}, m) = \begin{cases} 1 & \text{if } m = 0 \\ \prod_{i < m} g(\mathbf{n}, i) & \text{if } m > 0 \end{cases}$$

Proof: f_1 and f_2 can be written using primitive recursion and case distinction:

$$f_1(\mathbf{n}, 0) = 0$$

 $f_1(\mathbf{n}, m + 1) = f_1(\mathbf{n}, m) + g(\mathbf{n}, m)$

Sums and products

Theorem

If $g: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ is a primitive recursive function then the following functions $f_1, f_2: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ are also primitive recursive:

$$f_1(\mathbf{n}, m) = \begin{cases} 0 & \text{if } m = 0 \\ \sum_{i < m} g(\mathbf{n}, i) & \text{if } m > 0 \end{cases}$$

$$f_2(\mathbf{n}, m) = \begin{cases} 1 & \text{if } m = 0 \\ \prod_{i < m} g(\mathbf{n}, i) & \text{if } m > 0 \end{cases}$$

Proof: f_1 and f_2 can be written using primitive recursion and case distinction:

$$f_1(\mathbf{n},0) = 0$$
 $f_2(\mathbf{n},0) = 1$ $f_2(\mathbf{n},m) + g(\mathbf{n},m)$ $f_2(\mathbf{n},m+1) = f_2(\mathbf{n},m) * g(\mathbf{n},m)$