
Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 4)

19.07.2016

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

2

Until now

• Time and space complexity: PTIME, NTIME, PSPACE, NSPACE

• Complexity classes: P, NP, PSPACE

• Complexity classes for functions

• Polynomial time reducibility

• Complete and hard problems

• Examples of NP-complete problems

3

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, CNF-SAT, 3-CNF-SAT))

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

4

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Can a graph be colored with three colors?

4. Rucksack problem

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

5

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.

6

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and

is a cycle.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle

7

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle

LHam,dir : the language consisting of all directed graphs

which contain a Hamiltonian cycle

NP-completeness: again reduction from 3-CNF-SAT.

8

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian

cycle is NP-complete.

Proof. (1) The problem is in NP: Guess a permutation of the nodes; check

that they form a Hamiltonian cycle (in polynomial time).

(2) The problem is NP-hard. Reduction from 3-CNF-SAT.

F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lk1 ∨ Lk2 ∨ Lk3)

Construct f (F) = G such that G contains a Hamiltonian cycle iff F

satisfiable.

The details can be found in Erk & Priese, “Theoretische Informatik”,

p.466-471.

9

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

10

Examples of NP-complete problems

Definition (Multiprocessor scheduling problem)

A scheduling problem consists of:

• n processes with durations t1, . . . , tn

• m processors

• a maximal duration (deadline) D

The scheduling problem has a solution if there exists an distribution of processes

on the processors such that all processes end before the deadline D.

Lschedule : the language consisting of all solvable

scheduling problems

11

Other complexity classes

12

Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic}

Theorem. Ltautologies is in co-NP.

Proof. The complement of Ltautologies is the set of formulae whose negation

is satisfiable, thus in NP.

13

PSPACE

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: – L ∈ PSPACE

– L is PSPACE-hard

14

Quantified Boolean Formulae

Syntax: Extend the syntax of propositional logic by allowing quantification

over propositional variables.

Semantics:

(

A

P)F 7→ F [P 7→ 1] ∧ F [P 7→ 0]

(
E

P)F 7→ F [P 7→ 1] ∨ F [P 7→ 0]

15

PSPACE

A fundamental PSPACE problem was identified by Stockmeyer and Meyer

in 1973.

Quantified Boolean Formulas (QBF)

Given: A well-formed quantified Boolean formula

F = (Q1P1) . . . (QnPn)G(x1, . . . , xn)

where G is a Boolean expression containing the propositional variables

P1, . . . ,Pn and Qi is

E

or

A

.

Question: Is F true?

(Does it evaluate to 1 if we use the evaluation rules above?)

16

PSPACE

Example

F propositional formula with propositional variables P1, . . . ,Pn

F is satisfiable iff

E

P1 . . .

E

PnF is true.

17

PSPACE

Example

F propositional formula with propositional variables P1, . . . ,Pn

F is satisfiable iff

E

P1 . . .

E

PnF is true.

If we have alternations of quantifiers it is more difficult to check whether a

QBF is true.

18

PSPACE

Theorem QBF is PSPACE complete

Proof (Idea only)

(1) QBF is in PSPACE: we can try all possible assignments of truth values

one at a time and reusing the space (2n time but polynomial space).

(2) QBF is PSPACE complete. We can show that every language L′ in

PSPACE can be polymomially reduced to QBF using an idea similar to

that used in Cook’s theorem (we simulate a polynomial space bounded

computation and not a polynomial time bounded computation).

19

The structure of PSPACE

20

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

21

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a language L′ ∈ P and a k ≥ 0 s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |x | and s.t. 〈w , c〉 ∈ L′

(can use c to check in PTIME that w ∈ L)

22

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a language L′ ∈ P and a k ≥ 0 s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |x | and s.t. 〈w , c〉 ∈ L′

(can use c to check in PTIME that w ∈ L)

L ∈ co-NP iff the complement of L is in NP (with test language L′)

w ∈ L iff

A

c of lenght polynomial in |x |, 〈w , c〉 6∈ L′

(can use c to check in PTIME that w ∈ L)

23

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a PTIME deterministic verifyer M s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |x | and s.t. M(w , c) = 1

L ∈ co-NP iff the complement of L is in NP (with test language L′)

w ∈ L iff

A

c of lenght polynomial in |x |, M(x , c) = 1.

24

The structure of PSPACE

... Beyond NP

25

The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t. M(w , c) = 1.

co-NP

w ∈ L iff

A

c of lenght polynomial in |w |, s.t. M(w , c) = 1.

Σp
2

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t.

A

d of lenght polynomial in |w |, M(w , c, d) = 1

26

The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t. M(w , c) = 1.

co-NP

w ∈ L iff

A

c of lenght polynomial in |w |, s.t. M(w , c) = 1.

Σp
2

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t.

A

d of lenght polynomial in |w |, M(w , c, d) = 1

Example: QBF with one quantifier alternation

Σ2SAT = {F =

E

P1 . . .Pn

A

Q1 . . .QmF (P1, . . . ,Pn,Q1, . . .Qn) | F true}

27

The structure of PSPACE

Remarks

• in fact, Σ2SAT is complete for Σp
2

• more alternations lead to a whole hierarchy

• all of it is contained in PSPACE

28

The structure of PSPACE

For i ≥ 1,a language L is in Σp
i
if there exists a PTIME deterministic

verifyer M such that:

w ∈ L iff

E

u1 of lenght polynomial in |w |

A

u2 of lenght polynomial in |w |

. . .

Qiui of lenght polynomial in |w |

such that M(w , u1, . . . , ui) = 1

where Qi is

E

if i is odd and

A

otherwise.

The polynomial hierarchy is the set PH =
⋃

i≥1 Σ
p
i

Πp
i
= co-Σp

i
= {CL | L ∈ Σp

i
}

29

The structure of PSPACE

Formal definition (main ideas)

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.

30

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.

defines a so-called (polynomial time) nondeterministic Turing reduction

31

The structure of PSPACE

The polynomial hierarchy

PY = {L | there exists a language L′ ∈ Y such that L �pol L
′}

NPY = {L | there exists a language L′ ∈ Y such that there exists a

nondeterministic Turing reduction from L to L′}

Σp
0 = Πp

0 = ∆p
0 = P.

∆p
k+1 = PΣ

p
k

Σp
k+1 = NPΣ

p
k

Πp
k+1 = co-NPΣ

p
k

Πp
1 = co-NPP = co-NP; Σp

1 = NPP = NP; ∆p
1 = PP = P.

∆p
2 = PNP ; Σp

2 = NPNP

32

The structure of PSPACE

PSPACE

33

The structure of PSPACE

It is an open problem whether there is an i such that Σp
i
= Σp

i+1.

This would imply that Σp
i
= PH: the hierarchy collapses to the i-th level.

Most researchers believe that the hierarchy does not collapse.

If NP = P then PH = P, i.e. the hierarchy collapses to P.

34

The structure of PSPACE

A complete problem for ΣP
k
is satisfiability for quantified Boolean formulas

with k alternations of quantifiers which start with an existential quantifier

sequence (abbreviated QBFk or QSATk).

(The variant which starts with

A

is complete for ΠP
k
).

35

Beyond PSPACE

EXPTIME, NEXPTIME

DEXPTIME, NDEXPTIME

EXPSPACE,

36

Discussion

• In practical applications, for having efficient algorithms polynomial

solvability is very important; exponential complexity inacceptable.

• Better hardware is no solution for bad complexity

Question which have not been clarified yet:

• Does parallelism/non-determinism make problems tractable?

• Any relationship between space complexity and run time behaviour?

37

Other directions in complexity

Parameterized complexity

Pseudopolynomial problems

Approximative and probabilistic algorithms

38

Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE

complete)

• Undecidable: validity of formulae in FOL; termination, correctness of

programs

• NP-complete: SAT, Scheduling

• PSPACE complete: games, market analyzers

39

Motivation

Possible approaches:

• Identify which part of the input is cause of high complexity

• Heuristic solutions:

– use knowledge about the structure of problems in a specific

application area;

– renounce to general solution in favor of a good “average case” in

the specific area of applications.

• Approximation: approximative solution

– Renounce to optimal solution in favor of shorter run times.

• Probabilistic approaches:

– Find correct solution with high probability.

– Renounce to sure correctness in favor of shorter run times.

40

(I) Parameterized Complexity

Parameterized complexity is a branch of computational complexity theory

that focuses on classifying computational problems according to their

inherent difficulty with respect to multiple parameters of the input.

This allows the classification of NP-hard problems on a finer scale.

7→ Fixed parameter tractability.

Example: SAT

Assume that the number of propositional variables is a parameter.

A given formula of size m with k variables can be checked by brute force in

time O(2km)

For a fixed number of variables, the complexity of the problem is linear in

the length of the input formula.

41

(I) Parameterized Complexity

Fixed parameter tractability parameter specified: Input of the form (w , k)

L is fixed-parameter tractable if the question (w , k) ∈ L? can can be decided

in running time f (k) · p(|w |), where f is an arbitrary function depending

only on k, and p is a polynomial.

An example of a problem that is thought not to be fixed parameter tractable

is graph coloring parameterised by the number of colors.

It is known that 3-coloring is NP-hard, and an algorithm for graph

k-colouring in time f (k)p(n) for k = 3 would run in polynomial time in the

size of the input.

Thus, if graph coloring parameterised by the number of colors were fixed

parameter tractable, then P = NP.

42

(II) Approximation

Many NP-hard problems have optimization variants

• Example: Clique: Find a possible greatest clique in a graph

... but not all NP-difficult problems can be solved approximatively in

polynomial time:

• Example: Clique: Not possible to find a good polynomial approximation

(unless P = NP)

43

(III) Probabilistic algorithms

Idea

• Undeterministic, random computation

• Goal: false decision possible but not probable

• The probability of making a mistake reduced by repeating computations

• 2−100 below the probability of hardware errors.

44

Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique

NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph G = (V ,E)

Repeat the following k times:

• Choose randomly v1 ∈ V and {v2, v3} ∈ E

• Test if v1, v2, v3 build a clique.

Error probability:

k = (|E | · |V |)/3: Error probability < 0.5

k = 100(|E | · |V |)/3: Error probability < 2−100

45

Overview

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models

46

Overview

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models

47

Other computation models

• Variations of register machines (one register; two registers)

• Variations of TM; links with register machines

• Reversible computations: e.g. chemical reversibility or reversibility as

in physics

• DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

48

Other computation models

• Variations of register machines (one register; two registers)

• Variations of TM; links with register machines

• Reversible computations: chemical and psysichal reversibility

• DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Variants of automata

• Tree automata

• Automata over infinite words

49

Variants of automata

Tree automata

Like automata, but deal with tree structures, rather than the strings.

Tree automata are an important tool in computer science:

• compiler construction

• automatic verification of cryptographic protocols.

• processing of XML documents.

50

Variants of automata

Automata on infinite words (or more generally: infinite objects)

ω-Automata (Büchi automata, Rabin automata, Streett automata, parity

automata and Muller automata)

• run on infinite, rather than finite, strings as input.

• Since ω-automata do not stop, they have a variety of acceptance

conditions rather than simply a set of accepting states.

Applications: Verification, temporal logic

51

Look forward

Next semester:

• Seminar: Decision procedures and applications 7→ emphasis on

decidability and complexity results for various application areas.

Various possibilities for BSc/MSc thesis and Forschungspraktika.

52

