
Vertiefung Theoretische Informatik

Advanced Topics in Theoretical Computer
Science

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Summersemester 2016

1

Acknowledgments

In preparing this lecture we used slides from the lecture of

Bernard Beckert, Theoretische Informatik II (held in Koblenz in

2007/2008;

based on slides by K. Erk and L. Priese and on slides by

Christoph Kreitz)

Many thanks!

2

Literatur

Book:

Katrin Erk and Lutz Priese:

Theoretische Informatik: Eine umfassende Einführung.

2. Auflage.

Springer-Verlag.

3

Further literature

• J. Hopcroft, R. Motwani, and J. Ullman (2002).

Einführung in die Automatentheorie, Formale Sprachen und

Komplexitätstheorie.

Pearson.

• G. Vossen and K.-U. Witt (2004).

Grundkurs Theoretische Informatik.

Vieweg.

• U. Schöning (1994).

Theoretische Informatik: kurzgefasst.

Spektrum-Verlag.

• J. Hromkowitz (2011). Theoretische Informatik

4. Auflage

Studium.

4

Organisation

Lecture: Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

5

Organisation

Lecture: Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Exercise: Holger Heinz, Markus Bender

mbender@uni-koblenz.de

6

Introduction

• Details about the lecture

• Motivation

• Contents

7

Lecture

• Webseite: www.uni-koblenz.de/∼sofronie/vertiefung-ti-2016

• Time and place:

– Lecture: Tuesday, 10:00-12:00, Room G 310

– Exercise: Wednesday, 16:00-18:00, Room B 016

Any change necessary?

8

Lecture

Exercises:

• Will appear weekly on the website

• Will be discussed in the exercise session in the following week

• You can solve them (possibly also in groups of up to 3 students) and

hand in the solutions

9

Lecture

Exercises:

• Will appear weekly on the website

• Will be discussed in the exercise session in the following week

• You can solve them (possibly also in groups of up to 3 students) and

hand in the solutions ... but you do not have to hand them in

10

Lecture

Exams:

Written (duration 2 h) or oral, depending on the number of participants.

• 1. Exam: end of the lecture time (from all the material).

Criterion for passing: 50% of the total number of points

• 2. Exam: end of the semester (from all the material)

Criterion for passing: 50% of the total number of points.

11

Introduction

• Details about the lecture

• Motivation

• Contents

12

Motivation

Theoretical Computer Science studies fundamental concepts in computer

science:

• Problems and their description

• Systems/Automata/Machines which solve problems

• “Solvability” of Problems

(Computability/Decidability and their limits)

• Difficulty (complexity) of solving problems

13

Areas of Theoretical Computer Science

• Formal Languages

• Automata Theory

• Computability Theory

• Complexity Theory

• (Logic)

14

Focus of this lecture

• Formal Languages

• Automata Theory

• Computability Theory

• Complexity Theory

• (Logic)

15

Importance

Why is Theoretical Computer Science important?

16

Importance

Why is Theoretical Computer Science important?

Theoretical Computer Science

• is the “fundament” of computer science

• is important e.g. for:

algorithm techniques, software engineering, compiler construction

• helps in understanding further topics/lectures in computer science

• does not get “old”

• is fun!

17

The pragmatical view

18

The pragmatical view

Assume you are employed as software designer.

19

The pragmatical view

Assume you are employed as software designer.

One day, your boss calls you into his office and and tells you that the

company is about to enter a very competitive market, for which it is

essential to know how to solve (efficiently) problem X .

Your charge is to find an efficient algorithm for solving this problem.

20

The pragmatical view

What you certainly don’t want:

(Garey, Johnson, 1979)

21

The pragmatical view

It would be much better if you could prove that problem X is inherently

intractable, i.e. that no algorithm could possibly solve it quickly.

22

The pragmatical view

Much better:

(Garey, Johnson, 1979)

23

The pragmatical view

In this lecture we will show for instance how to prove that certain problems

do not have a (terminating) algorithmic solution

7→ undecidability results

Unfortunately, proving inherent intractability can be just as hard as finding

efficient algorithms.

24

The pragmatical view

However, we will see that you can often answer:

(Garey, Johnson, 1979)

25

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata

26

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata

27

Computability/Turing Machines: Idea

28

What is a problem?

Informally:

for certain inputs

certain outputs must be produced.

More precise definition:

Input: Word over alphabet Σ

Output: Word(s) over alphabet Σ

Problem as relation R ⊆ Σ∗ × Σ∗

(x , y) is in R, if y is a possible output for input x .

Problem as function

Often, for every input there exists a unique output.

In this case, we can represent a problem as a function f : Σ∗ → Σ∗.

The output corresponding to the input x ∈ Σ∗ is f (x) ∈ Σ∗.

29

Decision problems

Many problems can be formulated as Yes-No questions.

Such problems have the form:

P : Σ∗ → {Yes, No}

and are also called decision problems.

Decision problems vs. Languages

Let L = P−1(Yes) ⊆ Σ∗

the set of the inputs answered with “Yes”.

Such a subset is usually called language.

30

Decision problems

Many problems can be formulated as Yes-No questions.

Such problems have the form:

P : Σ∗ → {Yes, No}

and are also called decision problems.

Decision problems vs. Languages

Let L = P−1(Yes) ⊆ Σ∗

the set of the inputs answered with “Yes”.

Such a subset is usually called language.

Example:

x ∈ N 7→ w ∈ {0, 1, . . . , 9}∗

P(x):=

{

Yes Prog(x) terminates
No Prog(x) does not terminate

L = P−1(Yes) = {x | x > 100}

Prog(x)

begin if x > 100 then return x

else while true: continue

end

31

Central Question

Which functions are computable by an algorithm?

resp.

Which problems are decidable by an algorithm?

The motivation to study the decidability and undecidability of

problems stems from the mathematician David Hilbert:

At the beginning of the 20th century, he formulated a research plan,

(Hilbert’s Programme) with the goal of developing a formalism which

could allow to solve (algorithmically) all mathematical problems.

32

Central Question

Which functions are computable by an algorithm?

resp.

Which problems are decidable by an algorithm?

To clarify this question from a mathematical point of view, we must clarify

what is an algorithm and what is a computer.

33

Central Question

Which functions are computable by an algorithm?

resp.

Which problems are decidable by an algorithm?

To clarify this question from a mathematical point of view, we must clarify

what is an algorithm and what is a computer.

We need a mathematical model of computation

34

Central Question

Which functions are computable by an algorithm?

resp.

Which problems are decidable by an algorithm?

To clarify this question from a mathematical point of view, we must clarify

what is an algorithm/computer.

We need a mathematical model of computation:

Turing machines

Alan Turing

35

Alan Turing

Alan Turing (1912 - 1954)

• Mathematician and logician; one of the founders of computer science

• 1936: Introduced “Turing machine” as a model of computability

• 1938: PhD (with Alonzo Church in Princeton)

• During the 2nd World War:

Government Code and Cypher School (GCCS) Britain’s codebreaking centre.

For a time head of the section responsible for German naval cryptanalysis and

devised a number of techniques for breaking German ciphers.

• After the war: National Physical Laboratory, Computing Laboratory, University

of Manchester

• Contributions to AI (“Turing-Test”)

• Tragical death

One of the most important awards in computer science: Turing Award.

36

Turing machines

A Turing machine is a device that manipulates symbols on a strip of tape

according to a table of rules. It represents an algorithm or a program.

37

Turing machines

Alan Turing described a Turing machine (which he called “Logical

Computing Machine”), as consisting of:

“ ... an unlimited memory capacity obtained in the form of an

infinite tape marked out into squares, on each of which a symbol

could be printed.

At any moment there is one symbol in the machine; it is called

the scanned symbol.

The machine can alter the scanned symbol and its behavior is

in part determined by that symbol, but the symbols on the tape

elsewhere do not affect the behaviour of the machine.

However, the tape can be moved back and forth through the

machine, this being one of the elementary operations of the

machine. Any symbol on the tape may therefore eventually have

an innings.”

38

Deterministic Turing machines

... b c a c a d b c a c a d ...

State q

Program

b

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

39

Turing machines: Input

... b c a c a d ...

State q

Program

bb c a c a d

i

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

40

Turing machines: Computation step

... c b c a c a d b c a c a d b c a c a d ...

State q

... b c a c a d ...

Read
symbol

... b c a c a d b c a c a d b c a c a d b c a c a d ...

ProgramRead state
q, c

c

b

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

41

Turing machines: Computation step

...

Symbol
lesen

... b c a a d b c a c a d b c a c a d ...

State q

Program
q, c

... b c a c a d ...

Symbol
lesen

 − evaluate function
 (q,c) = (q’,c’,d)

State q’

c

c’

Write symbol

b

Determine new state

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

42

Turing machines: Computation step

...

Read

... b c a d ...

State q

Program
q, c

... b c a a d ...

symbol

 − evaluate function

State q’

c

c’ b

Possibly move head

Determine new state

 (q,c) = (q’,c’,d)
left if d = L
right if d = R
not if d = N

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

43

Turing maschines: End of the computation

... b c a ...

State q

Program

bb c a c a dc’ a d

Computed word

TM accepts the input

a

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N

transition function

44

Turing maschines: End of the computation

... b c a ...

State q

Program

bb c a c a dc’ a d

TM rejects the input

r

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

45

Turing maschines: End of the computation

... b c a ...

State q

Program

bb c a c a dc’ a d

The computation may not terminate

q = q rq = q a

read/write-head

Tape (unlimited both ways)

Σ: finite, non-empty input alphabet; ✷ ∈ Γ\Σ, blank symbol

Γ ⊃ Σ, finite, non-empty tape alphabet

Q: finite, non-empty set of states

qi ∈ Q initial state

qa ∈ Q final accepting state; qr ∈ Q final rejecting state

δ:(Q\{qa, qr})×Γ→Q×Γ×{R, L,N}

transition function

46

Turing-Computability/Decidability

Definition

• A function f : Σ∗ → Σ∗ is Turing computable, if there exists a Turing machine, which

terminates for all inputs and:

A

x , y ∈ Σ∗ f (x) = y iff M computes y from input x .

• A TM M accepts w ∈ Σ∗ if the computation of M on x terminates in state qa.

Definition

• A language L ⊆ Σ∗ is Turing decidable, if there is a Turing machine, which terminates

for all inputs and accepts the input w iff w ∈ L.

• A problem P : Σ∗ → {Yes, No} is Turing decidable, if there exists a Turing machine,

which terminates on all inputs and accepts the input w iff w ∈ L = P−1(Yes).

47

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

48

Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

49

Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code

50

Register Machines

Computation of a mod b (pseudocode)

r := a;

while r ≥ b do

r := r − b;

end;

return r

51

Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Which Input/Output?

52

Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Which Input/Output?

Here: LOOP-programs; WHILE-programs; GOTO-programs

Links between LOOP, WHILE, GOTO and Turing machines.

53

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

54

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

55

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

• Simple (“atomic”) functions are computable

• “Combinations” of computable functions are computable

(We consider functions f : Nk → N, k ≥ 0)

56

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

• Simple (“atomic”) functions are computable

• “Combinations” of computable functions are computable

(We consider functions f : Nk → N, k ≥ 0)

Questions

• Which are the atomic functions?

• Which combinations are possible?

57

Recursive functions

Atomic functions:

Constant null; successor; projection (choice)

58

Recursive functions

Atomic functions:

Constant null; successor; projection (choice)

Composition

function composition

59

Contents

• Recapitulation: Turing machines and Turing computability

• Recursive functions

• Register machines (LOOP, WHILE, GOTO)

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

60

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the

functions which are Turing computable.

61

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the

functions which are Turing computable.

Instances of this thesis: all known models of computation

• Turing machines

• Recursive functions

• λ-functions

• all known programming languages (imperative, functional, logic)

provide the same notion of computability

62

Alonzo Church

Alonzo Church (1903-1995)

• studied in Princeton; PhD in Princeton

• Postdoc in Göttingen

• Professor: Princeton and UCLA

• Layed the foundations of theoretical computer

science (e.g. introduced the λ-calculus)

• One of the most important computer scientists

63

Alonzo Church

PhD Students:

• Peter Andrews: automated reasoning

• Martin Davis: Davis-Putnam procedure (automated reasoning)

• Leon Henkin: (Standard) proof of completeness of predicate logic

• Stephen Kleene: Regular expressions

• Dana Scott: Denotational Semantics, Automata theory

• Raymond Smullyan: Tableau calculi

• Alan Turing: Turing machines, Undecidability of the halting problem

• ... and many others

64

Contents

• Recapitulation: Turing machines and Turing computability

• Recursive functions

• Register machines (LOOP, WHILE, GOTO)

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

65

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

• The halting problem for Turing machines

66

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

• The halting problem for Turing machines

Consequences:

• All problems about programs (TM) which are non-trivial (in a certain

sense) are undecidable (Theorem of Rice)

• Identify undecidable problems outside the world of Turing machines
– Validity/Satisfiability in First-Order Logic
– The Post Correspondence Problem

7→ undecidability results in formal languages

• These results show that Hilbert’s Program is not realisable.

67

Computability and (Un-)decidability

The Theorem of Rice (informal)

For each non-trivial property P of (partial) functions:

It is undecidable, whether the function computed by a Turing machine has

property P.

68

Computability and (Un-)decidability

The Theorem of Rice (informal)

For each non-trivial property P of (partial) functions:

It is undecidable, whether the function computed by a Turing machine has

property P.

Variant 2

For each non-trivial property P of languages of type 0:

It is undecidable, whether the language accepted by a Turing machine has

property P.

69

Computability and (Un-)decidability

The Theorem of Rice (informal)

For each non-trivial property P of (partial) functions:

It is undecidable, whether the function computed by a Turing machine has

property P.

Generalization:

The same holds for other computability models:

• algorithms

• Java programs

• λ expressions

• recursive functions

• etc.

70

Henry Gordon Rice

Henry Gordon Rice (born 1920)

best known as the author of Rice’s theorem, which he proved in his doctoral

dissertation of 1951 at Syracuse University.

71

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

72

Complexity

• Complexity classes; Relationships between complexity classes

(P, NP, PSPACE)

• How to show that a given problem is in a certain class?

Reduction to known problems (e.g. SAT)

• Complete and hard problems

• Closure properties for complexity classes

• Examples

73

Stephen Cook

Stephen Arthur Cook (born 1939)

• Major contributions to complexity theory.

Considered one of the forefathers of computational

complexity theory.

• 1971 ‘The Complexity of Theorem Proving Procedures’

Formalized the notions of polynomial-time reduction and

NP-completeness, and proved the existence of an NP-complete

problem by showing that the Boolean satisfiability problem

(SAT) is NP-complete.

• Currently University Professor at the University of Toronto

• 1982: Turing award for his contributions to complexity theory.

74

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models (if sufficient time)

75

Büchi Automata

ω-Automata

An ω-automaton (or stream automaton) is a variation of finite automaton

that runs on infinite, rather than finite, strings as input.

Since ω-automata do not stop, they have a variety of acceptance conditions

rather than simply a set of accepting states.

Classes of ω-automata include the Büchi automata, Rabin automata,

Streett automata, parity automata and Muller automata, each deterministic

or non-deterministic (differ only in terms of acceptance condition).

They all recognize precisely the regular ω-languages except for the

deterministic Büchi automata, which is strictly weaker than all the others.

76

Büchi Automata

Büchi automaton

Accepts an infinite input sequence iff there exists a run of the automaton

that visits (at least) one of the final states infinitely often.

Büchi automata are often used in Model checking as an automata-theoretic

version of a formula in linear temporal logic.

Model checking of finite state systems can often be translated into various

operations on Büchi automata.

77

Other models of computation

• The λ-calculus

Presented in the lecture “Programming language theory”

Brief idea in what follows

78

The λ-calculus

Lambda calculus (also written as λ-calculus) is a formal system in

mathematical logic for expressing computation by way of variable binding

and substitution.

It was first formulated by Alonzo Church as a way to formalize mathematics

through the notion of functions, in contrast to the field of set theory.

79

Example

The identity function id(x) = x : input x ; returns x

sqsum(x , y) = x · x + y · y : input (x , y); returns x2 + y2.

80

Example

The identity function id(x) = x : input x ; returns x

sqsum(x , y) = x · x + y · y : input (x , y); returns x2 + y2.

Observations:

1. functions need not be explicitly named.

sqsum(x , y) = x·x+y ·y can be rewritten as (x , y) 7→ x·x+y ·y

id(x) = x can be rewritten as x 7→ x

2. The specific choice of name for a function’s arguments is irrelevant.

x 7→ x and y 7→ y express the same function: the identity.

3. Any function that requires two inputs, for instance sqsum can be reworked into

an equivalent function that accepts a single input, and as output returns another

function, that in turn accepts a single input.

x 7→ (y 7→ x·x+y ·y)

(currying; can be generalized to functions with arbitrary number of arguments)

81

Example

The identity function id(x) = x : input x ; returns x

sqsum(x , y) = x · x + y · y : input (x , y); returns x2 + y2.

Observations:

1. functions need not be explicitly named.

sqsum(x , y) = x·x+y ·y can be rewritten as λx , y .(x·x+y ·y)

id(x) = x can be rewritten as λx .x

2. The specific choice of name for a function’s arguments is irrelevant.

λx .x and λy .y express the same function: the identity.

3. Any function that requires two inputs, for instance sqsum can be reworked into

an equivalent function that accepts a single input, and as output returns another

function, that in turn accepts a single input.

λx , y .(x·x+y ·y) is the same as

λx .λy .(x·x+y ·y)

(currying; can be generalized to functions with arbitrary number of arguments)

82

The λ-calculus

Lambda calculus has played an important role in the development of the

theory of programming languages. The most prominent counterparts to

lambda calculus in computer science are functional programming languages,

which essentially implement the calculus (augmented with some constants

and datatypes).

83

