Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (1)

10.5.2016

Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ -calculus

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions
- $\mathcal{P} = \text{LOOP}$
- μ -recursive functions
- $F_{\mu} = WHILE$
- Summary

 $\mapsto \mathcal{P}$

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable

(We consider functions $f : \mathbb{N}^k \to \mathbb{N}, \ k \ge 0$)

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable

(We consider functions $f : \mathbb{N}^k \to \mathbb{N}, \ k \ge 0$)

Questions

- Which are the atomic functions?
- Which combinations are possible?

The following functions are primitive recursive and μ -recursive:

The following functions are primitive recursive and μ -recursive:

The constant null

 $0:\mathbb{N}^0 \to \mathbb{N}$ with 0()=0

The following functions are primitive recursive and μ -recursive:

The constant null

$$0: \mathbb{N}^0 \to \mathbb{N}$$
 with $0() = 0$

Successor function

 $+1:\mathbb{N}^1 o\mathbb{N}$ with +1(n)=n+1 for all $n\in\mathbb{N}$

The following functions are primitive recursive and μ -recursive:

The constant null

$$0:\mathbb{N}^0 o\mathbb{N}$$
 with $0()=0$

Successor function

$$+1:\mathbb{N}^1 o\mathbb{N}$$
 with $+1(n)=n+1$ for all $n\in\mathbb{N}$

Projection function

$$\pi_i^k: \mathbb{N}^k \to \mathbb{N}$$
 with $\pi_i^k(n_1, \ldots, n_k) = n_k$

Recursive functions

Notation:

We will write **n** for the tuple (n_1, \ldots, n_k) , $k \ge 0$.

Recursive functions: Composition

$$\begin{array}{ll} \textbf{Composition:} & f : \mathbb{N}^r \to \mathbb{N} & r \geq 1 \\ & h_1 : \mathbb{N}^k \to \mathbb{N}, \dots, h_r : \mathbb{N}^k \to \mathbb{N} & k \geq 0 \\ \text{are primitive recursive resp. } \mu\text{-recursive, then} & \\ & f : \mathbb{N}^k \to \mathbb{N} \\ \text{defined for every } \mathbf{n} \in \mathbb{N}^k \text{ by:} \\ & f(\mathbf{n}) = g(h_1(\mathbf{n}), \dots, h_r(\mathbf{n})) \\ \text{is also primitive recursive resp. } \mu\text{-recursive.} \end{array}$$

Notation without arguments: $f = g \circ (h_1, \ldots, h_r)$

Until now:

- Atomic functions (Null, Successor, Projections)
- Composition

Next:

• Primitive recursion

Definition of primitive recursive functions

Primitive recursion

 If the functions

$$g: \mathbb{N}^k \to \mathbb{N}$$
 $(k \ge 0)$
 $h: \mathbb{N}^{k+2} \to \mathbb{N}$

 are primitive recursive,

 then the function

 $f: \mathbb{N}^{k+1} \to \mathbb{N}$ with

 $f(\mathbf{n}, 0) = g(\mathbf{n})$
 $f(\mathbf{n}, m+1) = h(\mathbf{n}, m, f(\mathbf{n}, m))$

 is also primitive recursive.

Primitive recursion

 If the functions

$$g: \mathbb{N}^k \to \mathbb{N}$$
 $(k \ge 0)$
 $h: \mathbb{N}^{k+2} \to \mathbb{N}$

 are primitive recursive,

 then the function

 $f: \mathbb{N}^{k+1} \to \mathbb{N}$ with

 $f(\mathbf{n}, 0) = g(\mathbf{n})$
 $f(\mathbf{n}, m+1) = h(\mathbf{n}, m, f(\mathbf{n}, m))$

 is also primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null O
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- **Composition:** The functions obtained by composition from primitive recursive functions are primitive recursive.
- **Primitive recursion:** The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null O
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- **Composition:** The functions obtained by composition from primitive recursive functions are primitive recursive.
- **Primitive recursion:** The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Definition (Primitive recursive functions)

- Atomic functions: The functions
 - Null O
 - Successor +1
 - Projection π_i^k $(1 \le i \le k)$

are primitive recursive.

- **Composition:** The functions obtained by composition from primitive recursive functions are primitive recursive.
- **Primitive recursion:** The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Notation: $\mathcal{P} =$ The set of all primitive recursive functions

$$f(n) = n + c$$

$$f(n) = n$$

$$f(n, m) = n + m$$

$$f(n, m) = n - 1$$

$$f(n, m) = n - m$$

$$f(n, m) = n * m$$

f(n) = n + c, for $c \in \mathbb{N}$, c > 0

f(n) = n + c, for $c \in \mathbb{N}, c > 0$ $f(n) = \underbrace{(+1)(\dots((+1)(n)))}_{c \text{ times}}$

f(n) = n + c, for $c \in \mathbb{N}$, c > 0

$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{I}$$

c times

f(n) = n + c, for $c \in \mathbb{N}$, c > 0

$$f = \underbrace{(+1) \circ \cdots \circ (+1)}_{\cdots}$$

c times

Identity

 $f: \mathbb{N} \to \mathbb{N}$, with f(n) = n

f(n) = n + c, for $c \in \mathbb{N}, c > 0$ $f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$

Identity

$$f = \pi_1^1$$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
 $f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$

Identity

$$f = \pi_1^1$$

f(n,m)=n+m

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
 $f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$

Identity

$$f = \pi_1^1$$

$$f(n, m) = n + m$$

 $f(n, 0) = n$
 $f(n, m + 1) = (+1)(f(n, m))$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
 $f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$

Identity

$$f = \pi_1^1$$

f(n,m)=n+m

 $egin{aligned} f(n,0) &= n & g(n) &= n & g &= \pi_1^1 \ f(n,m+1) &= (+1)(f(n,m)) & h(n,m,k) &= +1(k) & h &= (+1) \circ \pi_3^3 \end{aligned}$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
 $f = \underbrace{(+1) \circ \cdots \circ (+1)}_{c \text{ times}}$

Identity

$$f = \pi_1^1$$

f(n,m)=n+m

f(n,0) = ng(n) = n $g = \pi_1^1$ f(n,m+1) = (+1)(f(n,m))h(n,m,k) = +1(k) $h = (+1) \circ \pi_3^3$

 $f=\mathcal{PR}[\pi_1^1$, $(+1)\circ\pi_3^3]$

$$f(n) = n + c$$
, for $c \in \mathbb{N}, c > 0$
 $f = (+1) \circ \cdots \circ (+1)$

c times

Identity

$$f = \pi_1^1$$

$$f(n,m)=n+m$$

 $f = \mathcal{PR}[\pi_1^1$, $(+1) \circ \pi_3^3]$

$$f(n)=n-1$$

$$f(n) = n - 1$$
$$f(0) = 0$$
$$f(n+1) = n$$

$$f(n) = n - 1$$

$$f(0) = 0 g() = 0 g = 0$$

$$f(n+1) = n h(n,k) = n h = \pi_1^2$$

 $f = \mathcal{PR}[0, \pi_1^2]$

f(n)=n-1

$$f = \mathcal{PR}[0,\pi_1^2]$$

f(n,m)=n-m

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f(n, 0) = n$$

$$g(n) = n$$

$$g(n) = n$$

$$g(n) = \pi_1^1$$

$$h(n, m, k) = k - 1$$

$$g(-1) \circ \pi_3^3$$

$$f=\mathcal{PR}[\pi_1^1$$
 , $(-1)\circ\pi_3^3]$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f = \mathcal{PR}[\pi_1^1, (-1) \circ \pi_3^3]$$

$$f(n, m) = n * m$$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f = \mathcal{PR}[\pi_1^1, (-1) \circ \pi_3^3]$$

$$f(n, m) = n * m$$

$$f(n, 0) = 0$$

$$g(n) = 0$$

$$g(n) = 0$$

$$g = 0$$

$$h(n, m, k) = k + n$$

$$h = + \circ (\pi_3^3, \pi_1^3)$$

$$f = \mathcal{PR}[0, + \circ (\pi_3^3, \pi_1^3)]$$

$$f(n) = n - 1$$

$$f = \mathcal{PR}[0, \pi_1^2]$$

$$f(n, m) = n - m$$

$$f = \mathcal{PR}[\pi_1^1, (-1) \circ \pi_3^3]$$

$$f(n, m) = n * m$$

$$f = \mathcal{PR}[0, + \circ (\pi_3^3, \pi_1^3)]$$