
Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 2)

24.01.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

2

Motivation

Goals:

• Define formally time and space complexity last time

• Define a family of “complexity classes”: P, NP, PSPACE, ...

• Study the links between complexity classes

• Learn how to show that a problem is in a certain complexity class

Reductions to problems known to be in the complexity class

• Closure of complexity classes

We will give examples of problems from various areas and study their

complexity.

3

DTIME/NTIME and DSPACE/NSPACE

DTIME/NTIME Basic model: k-DTM or k-NTM M (one tape for the input)

If M makes for every input word of length n at most T (n) steps,

then M is T (n)-time bounded.

Definition (NTIME(T (n)),DTIME(T (n)))

• DTIME(T (n)) class of all languages accepted by T (n)-time bounded DTMs.

• NTIME(T (n)) class of all languages accepted by T (n)-time bounded NTMs.

DSPACE/NSPACE Basic model: k-DTM or k-NTM M with special tape for the input

(is read-only) + k storage tapes (offline DTM) 7→ needed if S(n) sublinear

If M needs, for every input word of length n, at most

S(n) cells on the storage tapes then M is S(n)-space bounded.

Definition (NSPACE(S(n)),DSPACE(S(n)))

• DSPACE(S(n)) class of all languages accepted by S(n)-space bounded DTMs.

• NSPACE(S(n)) class of all languages accepted by S(n)-space bounded NTMs.

4

Questions

Time: Is any language in DTIME(f (n)) decided by some DTM?

Space: Is any language in DSPACE(f (n)) decided by some DTM?

The functions f are usually very simple functions; in particular they are all

computable.

We will consider e.g. powers f (n) = nk .

Time/Space: What about NTIME(f (n)),NSPACE(f (n))

Time vs. Space: What are the links between DTIME(f (n)),DSPACE(f (n)),

NTIME(f (n)),NSPACE(f (n))

5

Answers

Answers (Informally)

Time: Every language from DTIME(f (n)) is decidable:

for an input of length n we wait as long as the value f (n).

If until then no answer “YES” then the answer is “NO”.

Space: Every language from DSPACE(f (n)) is decidable:

There are only finitely many configurations. We write all configurations.

If the TM does not halt then there is a loop. This can be detected.

6

Answers

Answers (Informally)

NTM vs. DTM: Clearly, DTIME(f (n)) ⊆ NTIME(f (n)) and

DSPACE(f (n)) ⊆ NSPACE(f (n))

If we try to simulate an NTM with a DTM we may

need exponentially more time. Therefore:

NTIME(f (n)) ⊆ DTIME(2h(n)) where h ∈ O(f).

For the space complexity we can show that:

NSPACE(f (n)) ⊆ DSPACE(f 2(n))

Time vs. Space: Clearly, DTIME(f (n)) ⊆ DSPACE(f (n)) and

NTIME(f (n)) ⊆ NSPACE(f (n))

DSPACE(f (n)),NSPACE(f (n)) are much larger.

7

Question

What about constant factors?

Constant factors are ignored. Only the rate of growth of a function in

complexity classes is important.

Theorem.

For every c ∈ R
+ and every storage function S(n) the following hold:

• DSPACE(S(n)) = DSPACE(cS(n))

• NSPACE(S(n)) = NSPACE(cS(n))

Proof (Idea). One direction is trivial. The other direction can be proved by representing

a fixed amount r >
2
c
of neighboring cells on the tape as a new symbol.

The states of the new machine simulate the movements of the read/write head as

transitions. For r -cells of the old machine we use only two: in the most unfavourable

case when we go from one block to another.

8

Time acceleration

Theorem For every c ∈ R
+ and every time function T (n) with

limn→∞
T (n)
n

= ∞ the following hold:

• DTIME(T (n)) = DTIME(cT (n))

• NTIME(T (n)) = NTIME(cT (n))

Proof (Idea). One direction is trivial. The other direction can be proved by representing

a fixed amount r >
4
c
of neighboring cells on the tape as a new symbol.

The states of the new machine simulate also now which symbol and which position

the read/write head of the initial machine has. When the machine is simulated the

new machine needs to make 4 steps instead of r : 2 in order to write on the new fields

and 2 in order to move the head on the new field and then back on the old (in the

worst case).

9

Big O notation

Theorem: Let T be a time function with limn→∞
T (n)
n

= ∞ and S a

storage function.

(a) If f (n) ∈ O(T (n)) then DTIME(f (n)) ⊆ DTIME(T (n)).

(b) If g(n) ∈ O(S(n)) then DSPACE(g(n)) ⊆ DSPACE(S(n)).

10

P, NP, PSPACE

Definition

P =
⋃

i≥1 DTIME(ni)

NP =
⋃

i≥1 NTIME(ni)

PSPACE =
⋃

i≥1 DSPACE(ni)

11

P, NP, PSPACE

Definition

P =
⋃

i≥1 DTIME(ni)

NP =
⋃

i≥1 NTIME(ni)

PSPACE =
⋃

i≥1 DSPACE(ni)

Lemma NP ⊆
⋃

i≥1 DTIME(2O(ni))

Proof: Follows from the fact that if L is accepted by a f (n)-time bounded

NTM then L is accepted by an 2O(f (n))-time bounded DTM, hence for every

i ≥ 1 we have:

NTIME(ni) ⊆ DTIME(2O(ni))

12

P, NP, PSPACE

P =
⋃

i≥1 DTIME(ni)

NP =
⋃

i≥1 NTIME(ni)

PSPACE =
⋃

i≥1 DSPACE(ni)

NP ⊆
⋃

i≥1 DTIME(2O(nd))

Intuition

• Problems in P can be solved efficiently; those in NP can be solved in

exponential time

• PSPACE is a very large class, much larger that P and NP.

13

Complexity classes for functions

Definition

A function f : N → N is in P if there exists a DTM M and a polynomial

p(n) such that for every n the value f (n) can be computed by M in at

most p(length(n)) steps.

Here length(n) = log(n): we need log(n) symbols to represent (binary) the

number n.

The other complexity classes for functions are defined in an analogous way.

14

Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?

15

Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?

P ⊆ NP ⊆ PSPACE

16

Complexity classes

How do we show that a certain problem is in a certain complexity class?

17

Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

We need one problem we can start with! (for NP: SAT)

18

Complexity classes

Can we find in NP problems which are the most difficult ones in NP?

Answer

There are various ways of defining “the most difficult problem”.

They depend on the notion of reducibility which we use.

For a given notion of reducibility the answer is YES.

Such problems are called complete in the complexity class with respect to

the notion of reducibility used.

19

Reduction

Definition (Polynomial time reducibility)

Let L1, L2 be languages.

L2 is polynomial time reducible to L1 (notation: L2 �pol L1)

if there exists a polynomial time bounded DTM, which for every input w computes

an output f (w) such that

w ∈ L2 if and only if f (w) ∈ L1

20

Reduction

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a po-

lynomial time reduction.

21

Reduction

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a po-

lynomial time reduction.

Proof: Assume L1 ∈ P. Then there exists k ≥ 1 such that L1 is accepted by nk -time

bounded DTM M1.

Since L2 �pol L1 there exists a polynomial time bounded DTM Mf , which for every

input w computes an output f (w) such that w ∈ L2 if and only if f (w) ∈ L1.

Let M2 = Mf M1. Clearly, M2 accepts L2. We have to show that M2 is polynomial

time bounded. w 7→ Mf computes f (w) (pol.size) 7→ M1 decides if f (w) ∈ L1

(polynomially many steps)

22

NP

Theorem (Characterisation of NP)

A language L is in NP if and only if there exists a language L′ in P and

a k ≥ 0 such that for all w ∈ Σ∗:

w ∈ L iff there exists c : 〈w , c〉 ∈ L′ and |c| < |w |k

c is also called witness or certificate for w in L.

A DTM which accepts the language L′ is called verifier.

Important

A decision procedure is in NP iff every “Yes” instance has a short witness

(i.e. its length is polynomial in the length of the input)

which can be verified in polynomial time.

23

Complete and hard problems

Definition (NP-complete, NP-hard)

• A language L is NP-hard (NP-difficult) if every language L′ in NP

is reducible in polynomial time to L.

• A language L is NP-complete if:

– L ∈ NP

– L is NP-hard

24

Complete and hard problems

Definition (PSPACE-complete, PSPACE-hard)

• A language L is PSPACE-hard (PSPACE-difficult) if every language

L′ in PSPACE is reducible in polynomial time to L.

• A language L is PSPACE-complete if:

– L ∈ PSPACE

– L is PSPACE-hard

25

Complete and hard problems

Remarks:

• If we can prove that at least one NP-hard problem is in P then P = NP

• If P 6= NP then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

26

Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

27

Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Is this sufficient?

28

Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If L′ is NP-complete then every language in NP is reducible to L′, therefore

also to L.

29

Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If L′ ∈ NP then every language in NP is reducible to L′ and therefore also

to L.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

L′ = Lsat = {w | w is a satisfiable formula of propositional logic}

30

Stephen Cook

Stephen Arthur Cook (born 1939)

• Major contributions to complexity theory.

Considered one of the forefathers of computational

complexity theory.

• 1971 ‘The Complexity of Theorem Proving Procedures’

Formalized the notions of polynomial-time reduction and

NP-completeness, and proved the existence of an NP-complete

problem by showing that the Boolean satisfiability problem

(SAT) is NP-complete.

• Currently University Professor at the University of Toronto

• 1982: Turing award for his contributions to complexity theory.

31

Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

32

Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea)

To show: (1) SAT ∈ NP

(2) for all L ∈ NP, L �pol SAT

33

Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea)

To show: (1) SAT ∈ NP

(2) for all L ∈ NP, L �pol SAT

(1) Construct a k-tape NTM M which can accept SAT in polynomial time:

w ∈ Σ∗

PL 7→ M does not halt if w 6∈ SAT

M finds in polynomial time a satisfying assignment

(a) scan w and see if it a well-formed formula; collect atoms 7→ O(|w |2)

(b) if not well-formed: inf.loop; if well-formed M guesses a satisfying assignment 7→ O(|w |)

(c) check whether w true under the assignment 7→ O(p(|w |))

(d) if false: inf.loop; otherwise halt.

“guess (satisfying) assignment A; check in polynomial time that formula true under A”

34

Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea) (2) We show that for all L ∈ NP, L �pol SAT

• We show that we can simulate the way a NTM works using propositional logic.

• Let L ∈ NP. There exists a polynomial time bounded NTM which accepts L.

(Assume w.l.o.g. that M has only one tape and does not hang.)

For M and w we define a propositional logic language and a formula TM,w such

that

M accepts w iff TM,w is satisfiable.

• We show that the map f with f (w) = TM,w has polynomial complexity.

35

Closure of complexity classes

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing

machines are closed under complement.

Proof: If a language L is in such a class then also its complement is

(run the machine for L and revert the output)

36

Closure of complexity classes

Is NP closed under complement?

37

Closure of complexity classes

Is NP closed under complement?

Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

co-NP = {L | L ∈ NP}

38

Relationships between complexity classes

It is not yet known whether the following relationships hold:

P
?
= NP

NP
?
= co-NP

P
?
= PSPACE

NP
?
= PSPACE

39

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)

2. Does a graph contain a clique of size k? (Clique of size k)

3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)

4. Can a graph be colored with three colors? (3-colorability)

5. Has a set of integers a subset with sum x? (subset sum)

6. Rucksack problem (knapsack)

7. Multiprocessor scheduling

40

