Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 2)

24.01.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Motivation

Goals:

• Define formally time and space complexity

last time

- Define a family of "complexity classes": P, NP, PSPACE, ...
- Study the links between complexity classes
- Learn how to show that a problem is in a certain complexity class Reductions to problems known to be in the complexity class
- Closure of complexity classes

We will give examples of problems from various areas and study their complexity.

DTIME/NTIME and DSPACE/NSPACE

DTIME/NTIME Basic model: k-DTM or k-NTM M (one tape for the input)

If M makes for every input word of length n at most T(n) steps, then M is T(n)-time bounded.

Definition (NTIME(T(n)), DTIME(T(n)))

- DTIME(T(n)) class of all languages accepted by T(n)-time bounded DTMs.
- NTIME(T(n)) class of all languages accepted by T(n)-time bounded NTMs.

DSPACE/NSPACE Basic model: k-DTM or k-NTM M with special tape for the input (is read-only) + k storage tapes (offline DTM) \mapsto needed if S(n) sublinear

If M needs, for every input word of length n, at most S(n) cells on the storage tapes then M is S(n)-space bounded.

Definition (NSPACE(S(n)), DSPACE(S(n)))

- DSPACE(S(n)) class of all languages accepted by S(n)-space bounded DTMs.
- NSPACE(S(n)) class of all languages accepted by S(n)-space bounded NTMs.

Questions

Time: Is any language in DTIME(f(n)) decided by some DTM?

Space: Is any language in DSPACE(f(n)) decided by some DTM?

The functions f are usually very simple functions; in particular they are all computable.

We will consider e.g. powers $f(n) = n^k$.

Time/Space: What about NTIME(f(n)), NSPACE(f(n))

Time vs. Space: What are the links between DTIME(f(n)), DSPACE(f(n)),

NTIME(f(n)), NSPACE(f(n))

Answers

Answers (Informally)

Time: Every language from DTIME(f(n)) is decidable:

for an input of length n we wait as long as the value f(n).

If until then no answer "YES" then the answer is "NO".

Space: Every language from DSPACE(f(n)) is decidable:

There are only finitely many configurations. We write all configurations

If the TM does not halt then there is a loop. This can be detected.

Answers

Answers (Informally)

NTM vs. DTM: Clearly, $DTIME(f(n)) \subseteq NTIME(f(n))$ and

 $DSPACE(f(n)) \subseteq NSPACE(f(n))$

If we try to simulate an NTM with a DTM we may

need exponentially more time. Therefore:

 $NTIME(f(n)) \subseteq DTIME(2^{h(n)})$ where $h \in O(f)$.

For the space complexity we can show that:

 $NSPACE(f(n)) \subseteq DSPACE(f^2(n))$

Time vs. Space: Clearly, $DTIME(f(n)) \subseteq DSPACE(f(n))$ and

 $NTIME(f(n)) \subseteq NSPACE(f(n))$

DSPACE(f(n)), NSPACE(f(n)) are much larger.

Question

What about constant factors?

Constant factors are ignored. Only the rate of growth of a function in complexity classes is important.

Theorem.

For every $c \in \mathbb{R}^+$ and every storage function S(n) the following hold:

- DSPACE(S(n)) = DSPACE(cS(n))
- NSPACE(S(n)) = NSPACE(cS(n))

Proof (Idea). One direction is trivial. The other direction can be proved by representing a fixed amount $r > \frac{2}{c}$ of neighboring cells on the tape as a new symbol.

The states of the new machine simulate the movements of the read/write head as transitions. For r-cells of the old machine we use only two: in the most unfavourable case when we go from one block to another.

Time acceleration

Theorem For every $c \in \mathbb{R}^+$ and every time function T(n) with $\lim_{n\to\infty}\frac{T(n)}{n}=\infty$ the following hold:

- DTIME(T(n)) = DTIME(cT(n))
- NTIME(T(n)) = NTIME(cT(n))

Proof (Idea). One direction is trivial. The other direction can be proved by representing a fixed amount $r > \frac{4}{c}$ of neighboring cells on the tape as a new symbol.

The states of the new machine simulate also now which symbol and which position the read/write head of the initial machine has. When the machine is simulated the new machine needs to make 4 steps instead of r: 2 in order to write on the new fields and 2 in order to move the head on the new field and then back on the old (in the worst case).

Big O notation

Theorem: Let T be a time function with $\lim_{n\to\infty}\frac{T(n)}{n}=\infty$ and S a storage function.

- (a) If $f(n) \in O(T(n))$ then $DTIME(f(n)) \subseteq DTIME(T(n))$.
- (b) If $g(n) \in O(S(n))$ then $DSPACE(g(n)) \subseteq DSPACE(S(n))$.

P, NP, PSPACE

Definition

$$P = \bigcup_{i \geq 1} DTIME(n^i)$$
 $NP = \bigcup_{i \geq 1} NTIME(n^i)$
 $PSPACE = \bigcup_{i \geq 1} DSPACE(n^i)$

P, NP, PSPACE

Definition

$$P = \bigcup_{i \geq 1} DTIME(n^i)$$
 $NP = \bigcup_{i \geq 1} NTIME(n^i)$
 $PSPACE = \bigcup_{i \geq 1} DSPACE(n^i)$

Lemma
$$NP \subseteq \bigcup_{i>1} DTIME(2^{O(n^i)})$$

Proof: Follows from the fact that if L is accepted by a f(n)-time bounded NTM then L is accepted by an $2^{O(f(n))}$ -time bounded DTM, hence for every $i \ge 1$ we have:

$$NTIME(n^i) \subseteq DTIME(2^{O(n^i)})$$

P, NP, PSPACE

```
P = \bigcup_{i \geq 1} DTIME(n^i)
NP = \bigcup_{i \geq 1} NTIME(n^i)
PSPACE = \bigcup_{i \geq 1} DSPACE(n^i)
NP \subseteq \bigcup_{i \geq 1} DTIME(2^{O(n^d)})
```

Intuition

- Problems in P can be solved efficiently; those in NP can be solved in exponential time
- PSPACE is a very large class, much larger that P and NP.

Complexity classes for functions

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is in P if there exists a DTM M and a polynomial p(n) such that for every n the value f(n) can be computed by M in at most p(length(n)) steps.

Here length $(n) = \log(n)$: we need $\log(n)$ symbols to represent (binary) the number n.

The other complexity classes for functions are defined in an analogous way.

Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?

Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?

$$\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}$$

Complexity classes

How do we show that a certain problem is in a certain complexity class?

Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

We need one problem we can start with! (for NP: SAT)

Complexity classes

Can we find in NP problems which are the most difficult ones in NP?

Answer

There are various ways of defining "the most difficult problem".

They depend on the notion of reducibility which we use.

For a given notion of reducibility the answer is YES.

Such problems are called complete in the complexity class with respect to the notion of reducibility used.

Reduction

Definition (Polynomial time reducibility)

Let L_1 , L_2 be languages.

 L_2 is polynomial time reducible to L_1 (notation: $L_2 \leq_{pol} L_1$) if there exists a polynomial time bounded DTM, which for every input w computes an output f(w) such that

 $w \in L_2$ if and only if $f(w) \in L_1$

Reduction

Lemma (Polynomial time reduction)

• Let L_2 be polynomial time reducible to L_1 ($L_2 \leq_{pol} L_1$). Then:

```
\begin{array}{lll} \text{If} & L_1 \in \textit{NP} & \text{then} & L_2 \in \textit{NP}. \\ \\ \text{If} & L_1 \in \textit{P} & \text{then} & L_2 \in \textit{P}. \end{array}
```

• The composition of two polynomial time reductions is again a polynomial time reduction.

Reduction

Lemma (Polynomial time reduction)

• Let L_2 be polynomial time reducible to L_1 ($L_2 \leq_{pol} L_1$). Then:

If
$$L_1 \in NP$$
 then $L_2 \in NP$.
If $L_1 \in P$ then $L_2 \in P$.

• The composition of two polynomial time reductions is again a polynomial time reduction.

Proof: Assume $L_1 \in P$. Then there exists $k \geq 1$ such that L_1 is accepted by n^k -time bounded DTM M_1 .

Since $L_2 \leq_{pol} L_1$ there exists a polynomial time bounded DTM M_f , which for every input w computes an output f(w) such that $w \in L_2$ if and only if $f(w) \in L_1$.

Let $M_2 = M_f M_1$. Clearly, M_2 accepts L_2 . We have to show that M_2 is polynomial time bounded. $w \mapsto M_f$ computes f(w) (pol.size) $\mapsto M_1$ decides if $f(w) \in L_1$ (polynomially many steps)

NP

Theorem (Characterisation of NP)

A language L is in NP if and only if there exists a language L' in P and a $k \ge 0$ such that for all $w \in \Sigma^*$:

$$w \in L$$
 iff there exists $c : \langle w, c \rangle \in L'$ and $|c| < |w|^k$

c is also called witness or certificate for w in L.

A DTM which accepts the language L' is called verifier.

Important

A decision procedure is in NP iff every "Yes" instance has a short witness (i.e. its length is polynomial in the length of the input) which can be verified in polynomial time.

Definition (NP-complete, NP-hard)

- A language L is NP-hard (NP-difficult) if every language L' in NP is reducible in polynomial time to L.
- A language *L* is NP-complete if:
 - $-L \in NP$
 - L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

- A language L is PSPACE-hard (PSPACE-difficult) if every language L' in PSPACE is reducible in polynomial time to L.
- A language *L* is PSPACE-complete if:
 - *L* ∈ *PSPACE*
 - L is PSPACE-hard

Remarks:

- ullet If we can prove that at least one NP-hard problem is in P then P = NP
- If $P \neq NP$ then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

Is this sufficient?

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If L' is NP-complete then every language in NP is reducible to L', therefore also to L.

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If $L' \in NP$ then every language in NP is reducible to L' and therefore also to L.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

 $L' = L_{\text{sat}} = \{ w \mid w \text{ is a satisfiable formula of propositional logic} \}$

Stephen Cook

Stephen Arthur Cook (born 1939)

- Major contributions to complexity theory.
 Considered one of the forefathers of computational complexity theory.
- 1971 'The Complexity of Theorem Proving Procedures' Formalized the notions of polynomial-time reduction and NP-completeness, and proved the existence of an NP-complete problem by showing that the Boolean satisfiability problem (SAT) is NP-complete.
- Currently University Professor at the University of Toronto
- 1982: Turing award for his contributions to complexity theory.

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ is NP-complete.

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ is NP-complete.

Proof (Idea)

To show: (1) $SAT \in NP$

(2) for all $L \in NP$, $L \leq_{pol} SAT$

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ is NP-complete.

Proof (Idea)

To show:

- (1) $SAT \in NP$
 - (2) for all $L \in NP$, $L \leq_{pol} SAT$
- (1) Construct a k-tape NTM M which can accept SAT in polynomial time:

 $w \in \Sigma_{PL}^* \mapsto M$ does not halt if $w \not\in SAT$

M finds in polynomial time a satisfying assignment

(a) scan w and see if it a well-formed formula; collect atoms

$$\mapsto O(|w|^2)$$

- (b) if not well-formed: inf.loop; if well-formed M guesses a satisfying assignment $\mapsto O(|w|)$
- (c) check whether w true under the assignment

$$\mapsto O(p(|w|))$$

(d) if false: inf.loop; otherwise halt.

"guess (satisfying) assignment \mathcal{A} ; check in polynomial time that formula true under \mathcal{A} "

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ is NP-complete.

Proof (Idea) (2) We show that for all $L \in NP$, $L \leq_{pol} SAT$

- We show that we can simulate the way a NTM works using propositional logic.
- Let $L \in NP$. There exists a polynomial time bounded NTM which accepts L. (Assume w.l.o.g. that M has only one tape and does not hang.) For M and w we define a propositional logic language and a formula $T_{M,w}$ such that

M accepts w iff $T_{M,w}$ is satisfiable.

• We show that the map f with $f(w) = T_{M,w}$ has polynomial complexity.

Closure of complexity classes

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing machines are closed under complement.

Proof: If a language L is in such a class then also its complement is (run the machine for L and revert the output)

Closure of complexity classes

Is NP closed under complement?

Closure of complexity classes

Is NP closed under complement?

Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

$$co-NP = \{L \mid \overline{L} \in NP\}$$

Relationships between complexity classes

It is not yet known whether the following relationships hold:

$$P \stackrel{?}{=} NP$$

$$NP \stackrel{?}{=} co-NP$$

$$P \stackrel{?}{=} PSPACE$$

$$NP \stackrel{?}{=} PSPACE$$

Examples of NP-complete problems

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
- 2. Does a graph contain a clique of size k? (Clique of size k)
- 3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
- 4. Can a graph be colored with three colors? (3-colorability)
- 5. Has a set of integers a subset with sum x? (subset sum)
- 6. Rucksack problem (knapsack)
- 7. Multiprocessor scheduling