# Advanced Topics in Theoretical Computer Science 

> Part 5: Complexity (Part 2)
24.01.2018

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

## Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity


## Motivation

## Goals:

- Define formally time and space complexity
- Define a family of "complexity classes" : P, NP, PSPACE, ...
- Study the links between complexity classes
- Learn how to show that a problem is in a certain complexity class

Reductions to problems known to be in the complexity class

- Closure of complexity classes

We will give examples of problems from various areas and study their complexity.

## DTIME/NTIME and DSPACE/NSPACE

DTIME/NTIME Basic model: $k$-DTM or $k$-NTM $M$ (one tape for the input)
If $M$ makes for every input word of length $n$ at most $T(n)$ steps, then $M$ is $T(n)$-time bounded.

Definition (NTIME (T(n)), DTIME(T(n)))

- $\operatorname{DTIME}(T(n))$ class of all languages accepted by $T(n)$-time bounded DTMs.
- NTIME $(T(n))$ class of all languages accepted by $T(n)$-time bounded NTMs.

DSPACE/NSPACE Basic model: $k$-DTM or $k$-NTM $M$ with special tape for the input (is read-only) $+k$ storage tapes (offline DTM) $\quad \mapsto$ needed if $S(n)$ sublinear

If $M$ needs, for every input word of length $n$, at most
$S(n)$ cells on the storage tapes then $M$ is $S(n)$-space bounded.
Definition (NSPACE (S(n)), DSPACE (S(n)))

- $\operatorname{DSPACE}(S(n))$ class of all languages accepted by $S(n)$-space bounded DTMs.
- $\operatorname{NSPACE}(S(n))$ class of all languages accepted by $S(n)$-space bounded NTMs.


## Questions

Time: Is any language in $\operatorname{DTIME}(f(n))$ decided by some DTM? Space: Is any language in $\operatorname{DSPACE}(f(n))$ decided by some DTM?

The functions $f$ are usually very simple functions; in particular they are all computable.

We will consider e.g. powers $f(n)=n^{k}$.

Time/Space: What about $\operatorname{NTIME}(f(n)), \operatorname{NSPACE}(f(n))$
Time vs. Space: What are the links between $\operatorname{DTIME}(f(n)), \operatorname{DSPACE}(f(n))$, $\operatorname{NTIME}(f(n)), \operatorname{NSPACE}(f(n))$

## Answers

## Answers (Informally)

Time: Every language from $\operatorname{DTIME}(f(n))$ is decidable: for an input of length $n$ we wait as long as the value $f(n)$. If until then no answer "YES" then the answer is "NO".

Space: Every language from $\operatorname{DSPACE}(f(n))$ is decidable:
There are only finitely many configurations. We write all configurations If the TM does not halt then there is a loop. This can be detected.

## Answers

Answers (Informally)
NTM vs. DTM: Clearly, $\operatorname{DTIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$ and $\operatorname{DSPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$
If we try to simulate an NTM with a DTM we may need exponentially more time. Therefore:
$\operatorname{NTIME}(f(n)) \subseteq D \operatorname{TIME}\left(2^{h(n)}\right)$ where $h \in O(f)$.
For the space complexity we can show that:

$$
\operatorname{NSPACE}(f(n)) \subseteq D S P A C E\left(f^{2}(n)\right)
$$

Time vs. Space: Clearly, $\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))$ and $\operatorname{NTIME}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$ $\operatorname{DSPACE}(f(n)), \operatorname{NSPACE}(f(n))$ are much larger.

## Question

## What about constant factors?

Constant factors are ignored. Only the rate of growth of a function in complexity classes is important.

## Theorem.

For every $c \in \mathbb{R}^{+}$and every storage function $S(n)$ the following hold:

- $\operatorname{DSPACE}(S(n))=\operatorname{DSPACE}(c S(n))$
- $\operatorname{NSPACE}(S(n))=\operatorname{NSPACE}(c S(n))$

Proof (Idea). One direction is trivial. The other direction can be proved by representing a fixed amount $r>\frac{2}{c}$ of neighboring cells on the tape as a new symbol.
The states of the new machine simulate the movements of the read/write head as transitions. For $r$-cells of the old machine we use only two: in the most unfavourable case when we go from one block to another.

## Time acceleration

Theorem For every $c \in \mathbb{R}^{+}$and every time function $T(n)$ with $\lim _{n \rightarrow \infty} \frac{T(n)}{n}=\infty$ the following hold:

- $\operatorname{DTIME}(T(n))=D T I M E(c T(n))$
- $\operatorname{NTIME}(T(n))=\operatorname{NTIME}(c T(n))$

Proof (Idea). One direction is trivial. The other direction can be proved by representing a fixed amount $r>\frac{4}{c}$ of neighboring cells on the tape as a new symbol.

The states of the new machine simulate also now which symbol and which position the read/write head of the initial machine has. When the machine is simulated the new machine needs to make 4 steps instead of $r$ : 2 in order to write on the new fields and 2 in order to move the head on the new field and then back on the old (in the worst case).

## Big O notation

Theorem: Let $T$ be a time function with $\lim _{n \rightarrow \infty} \frac{T(n)}{n}=\infty$ and $S$ a storage function.
(a) If $f(n) \in O(T(n))$ then $D T I M E(f(n)) \subseteq D T I M E(T(n))$.
(b) If $g(n) \in O(S(n))$ then $\operatorname{DSPACE}(g(n)) \subseteq \operatorname{DSPACE}(S(n))$.

## P, NP, PSPACE

## Definition

$$
\begin{array}{cl}
P & =\bigcup_{i \geq 1} \operatorname{DTIME}\left(n^{i}\right) \\
N P & =\bigcup_{i \geq 1} \operatorname{NTIME}\left(n^{i}\right) \\
\operatorname{PSPACE} & =\bigcup_{i \geq 1} \operatorname{DSPACE}\left(n^{i}\right)
\end{array}
$$

## P, NP, PSPACE

## Definition

$$
\begin{array}{cl}
P & =\bigcup_{i \geq 1} \operatorname{DTIME}\left(n^{i}\right) \\
N P & =\bigcup_{i \geq 1} \operatorname{NTIME}\left(n^{i}\right) \\
\operatorname{PSPACE} & =\bigcup_{i \geq 1} \operatorname{DSPACE}\left(n^{i}\right)
\end{array}
$$

Lemma $N P \subseteq \bigcup_{i \geq 1} \operatorname{DTIME}\left(2^{O\left(n^{i}\right)}\right)$

Proof: Follows from the fact that if $L$ is accepted by a $f(n)$-time bounded NTM then $L$ is accepted by an $2^{O(f(n))}$-time bounded DTM, hence for every $i \geq 1$ we have:

$$
\operatorname{NTIME}\left(n^{i}\right) \subseteq D \operatorname{TIME}\left(2^{O\left(n^{i}\right)}\right)
$$

## P, NP, PSPACE

$$
\begin{aligned}
P & =\bigcup_{i \geq 1} \operatorname{DTIME}\left(n^{i}\right) \\
N P & =\bigcup_{i \geq 1} \operatorname{NTIME}\left(n^{i}\right) \\
\operatorname{PSPACE} & =\bigcup_{i \geq 1} \operatorname{DSPACE}\left(n^{i}\right) \\
N P & \subseteq \bigcup_{i \geq 1} \operatorname{DTIME}\left(2^{O\left(n^{d}\right)}\right)
\end{aligned}
$$

Intuition

- Problems in $P$ can be solved efficiently; those in NP can be solved in exponential time
- PSPACE is a very large class, much larger that $P$ and $N P$.


## Complexity classes for functions

## Definition

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is in P if there exists a DTM $M$ and a polynomial $p(n)$ such that for every $n$ the value $f(n)$ can be computed by $M$ in at most $p$ (length $(n))$ steps.

Here length $(n)=\log (n)$ : we need $\log (n)$ symbols to represent (binary) the number $n$.

The other complexity classes for functions are defined in an analogous way.

## Relationships between complexity classes

Question:
Which are the links between the complexity classes P, NP and PSPACE?

## Relationships between complexity classes

Question:
Which are the links between the complexity classes P, NP and PSPACE?
$P \subseteq N P \subseteq P S P A C E$

## Complexity classes

How do we show that a certain problem is in a certain complexity class?

## Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem
We need one problem we can start with! (for NP: SAT)

## Complexity classes

Can we find in NP problems which are the most difficult ones in NP?

Answer
There are various ways of defining "the most difficult problem".
They depend on the notion of reducibility which we use.
For a given notion of reducibility the answer is YES.
Such problems are called complete in the complexity class with respect to the notion of reducibility used.

## Reduction

## Definition (Polynomial time reducibility)

Let $L_{1}, L_{2}$ be languages.
$L_{2}$ is polynomial time reducible to $L_{1}$ (notation: $L_{2} \preceq_{\text {pol }} L_{1}$ )
if there exists a polynomial time bounded DTM, which for every input $w$ computes an output $f(w)$ such that

$$
w \in L_{2} \text { if and only if } f(w) \in L_{1}
$$

## Reduction

Lemma (Polynomial time reduction)

- Let $L_{2}$ be polynomial time reducible to $L_{1}\left(L_{2} \preceq_{\text {pol }} L_{1}\right)$. Then:

| If | $L_{1} \in N P$ | then |
| :--- | :--- | :--- |
| If | $L_{2} \in N P$. |  |
| $L_{1} \in P$ | then | $L_{2} \in P$. |

- The composition of two polynomial time reductions is again a polynomial time reduction.


## Reduction

## Lemma (Polynomial time reduction)

- Let $L_{2}$ be polynomial time reducible to $L_{1}\left(L_{2} \preceq_{\text {pol }} L_{1}\right)$. Then:

If $L_{1} \in N P$ then $L_{2} \in N P$.
If $\quad L_{1} \in P \quad$ then $\quad L_{2} \in P$.

- The composition of two polynomial time reductions is again a polynomial time reduction.

Proof: Assume $L_{1} \in P$. Then there exists $k \geq 1$ such that $L_{1}$ is accepted by $n^{k}$-time bounded DTM $M_{1}$.

Since $L_{2} \preceq_{\text {pol }} L_{1}$ there exists a polynomial time bounded DTM $M_{f}$, which for every input $w$ computes an output $f(w)$ such that $\quad w \in L_{2}$ if and only if $f(w) \in L_{1}$.

Let $M_{2}=M_{f} M_{1}$. Clearly, $M_{2}$ accepts $L_{2}$. We have to show that $M_{2}$ is polynomial time bounded. $w \mapsto M_{f}$ computes $f(w)$ (pol.size) $\mapsto M_{1}$ decides if $f(w) \in L_{1}$ (polynomially many steps)

## NP

## Theorem (Characterisation of NP)

A language $L$ is in NP if and only if there exists a language $L^{\prime}$ in $P$ and a $k \geq 0$ such that for all $w \in \Sigma^{*}$ :

$$
w \in L \text { iff } \quad \text { there exists } c:\langle w, c\rangle \in L^{\prime} \text { and }|c|<|w|^{k}
$$

$c$ is also called witness or certificate for $w$ in $L$.
A DTM which accepts the language $L^{\prime}$ is called verifier.

Important
A decision procedure is in NP iff every "Yes" instance has a short witness
(i.e. its length is polynomial in the length of the input)
which can be verified in polynomial time.

## Complete and hard problems

## Definition (NP-complete, NP-hard)

- A language $L$ is NP-hard (NP-difficult) if every language $L^{\prime}$ in NP is reducible in polynomial time to $L$.
- A language $L$ is NP-complete if:
$-L \in N P$
- $L$ is NP-hard


## Complete and hard problems

## Definition (PSPACE-complete, PSPACE-hard)

- A language $L$ is PSPACE-hard (PSPACE-difficult) if every language $L^{\prime}$ in PSPACE is reducible in polynomial time to $L$.
- A language $L$ is PSPACE-complete if:
$-L \in$ PSPACE
- $L$ is PSPACE-hard


## Complete and hard problems

## Remarks:

- If we can prove that at least one NP-hard problem is in $P$ then $P=N P$
- If $P \neq N P$ then no NP complete problem can be solved in polynomial time

Open problem: Is $\mathrm{P}=\mathrm{NP}$ ? (Millenium Problem)

## Complete and hard problems

How to show that a language $L$ is NP-complete?

1. Prove that $L \in N P$
2. Find a language $L^{\prime}$ known to be NP-complete and reduce it to $L$

## Complete and hard problems

How to show that a language $L$ is NP-complete?

1. Prove that $L \in N P$
2. Find a language $L^{\prime}$ known to be NP-complete and reduce it to $L$

Is this sufficient?

## Complete and hard problems

How to show that a language $L$ is NP-complete?

1. Prove that $L \in N P$
2. Find a language $L^{\prime}$ known to be NP-complete and reduce it to $L$

Is this sufficient?
Yes.
If $L^{\prime}$ is NP-complete then every language in NP is reducible to $L^{\prime}$, therefore also to $L$.

## Complete and hard problems

How to show that a language $L$ is NP-complete?

1. Prove that $L \in N P$
2. Find a language $L^{\prime}$ known to be NP-complete and reduce it to $L$

Is this sufficient?
Yes.
If $L^{\prime} \in N P$ then every language in NP is reducible to $L^{\prime}$ and therefore also to $L$.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

$$
L^{\prime}=L_{\text {sat }}=\{w \mid w \text { is a satisfiable formula of propositional logic }\}
$$

## Stephen Cook

Stephen Arthur Cook (born 1939)

- Major contributions to complexity theory.

Considered one of the forefathers of computational complexity theory.

- 1971 'The Complexity of Theorem Proving Procedures'


Formalized the notions of polynomial-time reduction and NP-completeness, and proved the existence of an NP-complete problem by showing that the Boolean satisfiability problem (SAT) is NP-complete.

- Currently University Professor at the University of Toronto
- 1982: Turing award for his contributions to complexity theory.


## Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

## Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

Proof (Idea)
To show:
(1) $S A T \in N P$
(2) for all $L \in N P, L \preceq_{\text {pol }} S A T$

## Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

Proof (Idea)
To show:
(1) $S A T \in N P$
(2) for all $L \in N P, L \preceq_{\text {pol }} S A T$
(1) Construct a $k$-tape NTM $M$ which can accept SAT in polynomial time:
$w \in \Sigma_{P L}^{*} \quad \mapsto \quad M$ does not halt if $w \notin S A T$
$M$ finds in polynomial time a satisfying assignment
(a) scan $w$ and see if it a well-formed formula; collect atoms $\mapsto O\left(|w|^{2}\right)$
(b) if not well-formed: inf.loop; if well-formed $M$ guesses a satisfying assignment $\mapsto O(|w|)$
(c) check whether $w$ true under the assignment
$\mapsto O(p(|w|))$
(d) if false: inf.loop; otherwise halt.
"guess (satisfying) assignment $\mathcal{A}$; check in polynomial time that formula true under $\mathcal{A}$ "

## Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

Proof (Idea) (2) We show that for all $L \in N P, L \preceq_{\text {pol }} S A T$

- We show that we can simulate the way a NTM works using propositional logic.
- Let $L \in N P$. There exists a polynomial time bounded NTM which accepts $L$. (Assume w.l.o.g. that $M$ has only one tape and does not hang.)
For $M$ and $w$ we define a propositional logic language and a formula $T_{M, w}$ such that

$$
M \text { accepts } w \text { iff } \quad T_{M, w} \text { is satisfiable. }
$$

- We show that the map $f$ with $f(w)=T_{M, w}$ has polynomial complexity.


## Closure of complexity classes

## P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing machines are closed under complement.

Proof: If a language $L$ is in such a class then also its complement is (run the machine for $L$ and revert the output)

## Closure of complexity classes

Is NP closed under complement?

## Closure of complexity classes

Is NP closed under complement?
Nobody knows!

## Definition

co-NP is the class of all laguages for which the complement is in NP

$$
\operatorname{co-NP}=\{L \mid \bar{L} \in N P\}
$$

## Relationships between complexity classes

It is not yet known whether the following relationships hold:
$P \stackrel{?}{=} N P$
$N P \stackrel{?}{=}$ co-NP
$P \stackrel{?}{=}$ PSPACE
NP $\stackrel{?}{=}$ PSPACE

## Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
2. Does a graph contain a clique of size $k$ ? (Clique of size $k$ )
3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
4. Can a graph be colored with three colors? (3-colorability)
5. Has a set of integers a subset with sum $x$ ? (subset sum)
6. Rucksack problem (knapsack)
7. Multiprocessor scheduling
