Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 3)

31.01.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Info

Sample exams and solutions can be found on the website of the exercise.

Question/Answer Session

preferences: Friday, 23.02 or Monday, 26.02 (in the morning)

doodle in the next days.

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

We need one problem we can start with! (for NP: SAT)

Reduction

Definition (Polynomial time reducibility)

Let L_1 , L_2 be languages.

 L_2 is polynomial time reducible to L_1 (notation: $L_2 \leq_{pol} L_1$) if there exists a polynomial time bounded DTM, which for every input w computes an output f(w) such that

$$w \in L_2$$
 if and only if $f(w) \in L_1$

Lemma (Polynomial time reduction)

• Let L_2 be polynomial time reducible to L_1 ($L_2 \leq_{pol} L_1$). Then:

If
$$L_1 \in NP$$
 then $L_2 \in NP$.
If $L_1 \in P$ then $L_2 \in P$.

• The composition of two polynomial time reductions is again a polynomial time reduction.

Complete and hard problems

Definition (NP-complete, NP-hard)

- A language L is NP-hard (NP-difficult) if every language L' in NP is reducible in polynomial time to L.
- A language *L* is NP-complete if:
 - $-L \in NP$
 - L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

- A language L is PSPACE-hard (PSPACE-difficult) if every language L' in PSPACE is reducible in polynomial time to L.
- A language *L* is PSPACE-complete if:
 - $-L \in PSPACE$
 - L is PSPACE-hard

Complete and hard problems

Remarks:

- \bullet If we can prove that at least one NP-hard problem is in P then P = NP
- If $P \neq NP$ then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

 $L' = L_{sat} = \{ w \mid w \text{ is a satisfiable formula of propositional logic} \}$

Cook's theorem

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ is NP-complete.

Idea of proof: Last lecture

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
- 2. Does a graph contain a clique of size k? (Clique of size k)
- 3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
- 4. Can a graph be colored with three colors? (3-colorability)
- 5. Has a set of integers a subset with sum x? (subset sum)
- 6. Rucksack problem (knapsack)
- 7. Multiprocessor scheduling

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
- 2. Does a graph contain a clique of size k? (Clique of size k)
- 3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
- 4. Can a graph be colored with three colors? (3-colorability)
- 5. Has a set of integers a subset with sum x? (subset sum)
- 6. Rucksack problem (knapsack)
- 7. Multiprocessor scheduling

Definition (CNF, DNF, *k***-CNF,** *k***-DNF)**

DNF: A formula is in DNF if it has the form

$$(L_1^1 \wedge \cdots \wedge L_{n_1}^1) \vee \cdots \vee (L_1^m \wedge \cdots \wedge L_{n_m}^m)$$

CNF: A formula is in CNF if it has the form

$$(L_1^1 \vee \cdots \vee L_{n_1}^1) \wedge \cdots \wedge (L_1^m \vee \cdots \vee L_{n_m}^m)$$

k-DNF: A formula is in k-DNF if it is in DNF and

all its conjunctions have k literals

k-CNF: A formula is in k-CNF if it is in CNF and

all its disjunctions have k literals

 $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$

 $\mathsf{CNF}\text{-}\mathsf{SAT} = \{w \mid w \text{ is a satisfiable formula of propositional logic in } \mathsf{CNF}\}$

k-CNF-SAT = $\{w \mid w \text{ is a satisfiable formula of propositional logic in } k$ -CNF $\}$

Theorem

The following problems are in NP and are NP-complete:

- (1) SAT
- (2) CNF-SAT (3) k-CNF-SAT for $k \ge 3$

Theorem

The following problems are in NP and are NP-complete:

- (1) SAT
- (2) CNF-SAT
- (3) k-CNF-SAT for $k \ge 3$

Proof: (1) SAT is NP-complete by Cook's theorem.

CNF-SAT and k-CNF-SAT are clearly in NP.

(3) We show that 3-CNF-SAT is NP-hard. For this, we construct a polynomial reduction of SAT to 3-CNF-SAT.

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.

Let F be a propositional formula of length n

Step 1 Move negation inwards (compute the negation normal form)
$$\mapsto O(n)$$

Step 2 Fully bracket the formula
$$\mapsto O(n)$$

 $P \land Q \land R \mapsto (P \land Q) \land R$

Step 3 Starting from inside out replace subformula Q o R with a new propositional variable $P_{Q \ o \ R}$ and add the formula

$$P_{Q \circ R} \to (Q \circ R) \text{ and } (Q \circ R) \to P_{Q \circ R} (o \in \{\lor, \land\}) \qquad \mapsto O(p(n))$$

Step 4 Write all formulae above as clauses
$$\mapsto$$
 Rename(F) \mapsto $O(n)$

Let $f: \Sigma^* \to \Sigma^*$ be defined by: $f(F) = P_F \land \text{Rename}(F)$ if F is a well-formed formula and $f(w) = \bot$ otherwise. Then:

 $F \in \mathsf{SAT}$ iff F is a satisfiable formula in prop. logic iff $P_F \wedge Rename(F)$ is satisfiable iff $f(F) \in 3\text{-}\mathsf{CNF}\text{-}\mathsf{SAT}$

Let *F* be the following formula:

$$[(Q \land \neg P \land \neg (\neg (\neg Q \lor \neg R))) \lor (Q \land \neg P \land \neg (Q \land \neg P))] \land (P \lor R).$$

Step 1: After moving negations inwards we obtain the formula:

$$F_1 = [(Q \land \neg P \land (\neg Q \lor \neg R)) \lor (Q \land \neg P \land (\neg Q \lor P))] \land (P \lor R)$$

Step 2: After fully bracketing the formula we obtain:

$$F_2 = [((Q \land \neg P) \land (\neg Q \lor \neg R)) \lor ((Q \land \neg P) \land (\neg Q \lor P)] \land (P \lor R)$$

Step 3: Replace subformulae with new propositional variables (starting inside).

$$\underbrace{[(\underbrace{(Q \land \neg P)}_{P_1} \land \underbrace{(\neg Q \lor \neg R)}_{P_2}) \lor (\underbrace{(Q \land \neg P)}_{P_1} \land \underbrace{(\neg Q \lor P)}_{P_4})] \land \underbrace{(P \lor R)}_{P_5}}_{P_7}.$$

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$P_{F} \wedge (P_{F} \leftrightarrow (P_{8} \wedge P_{5}) \wedge (P_{1} \leftrightarrow (Q \wedge \neg P))$$

$$\wedge (P_{8} \leftrightarrow (P_{6} \vee P_{7})) \wedge (P_{2} \leftrightarrow (\neg Q \vee \neg R))$$

$$\wedge (P_{6} \leftrightarrow (P_{1} \wedge P_{2})) \wedge (P_{4} \leftrightarrow (\neg Q \vee P))$$

$$\wedge (P_{7} \leftrightarrow (P_{1} \wedge P_{4})) \wedge (P_{5} \leftrightarrow (P \vee R))$$

can further exploit polarity

Step 3: Replace subformulae with new propositional variables (starting inside).

$$\underbrace{[(\underbrace{(Q \land \neg P)}_{P_1} \land \underbrace{(\neg Q \lor \neg R)}_{P_2}) \lor \underbrace{(\underbrace{(Q \land \neg P)}_{P_1} \land \underbrace{(\neg Q \lor P)}_{P_4})}_{P_7}] \land \underbrace{(P \lor R)}_{P_5}.$$

F is satisfiable iff the following formula is satisfiable:

$$P_F$$
 \wedge $(P_F \rightarrow (P_8 \wedge P_5) \wedge (P_1 \rightarrow (Q \wedge \neg P))$
 \wedge $(P_8 \rightarrow (P_6 \vee P_7)) \wedge (P_2 \rightarrow (\neg Q \vee \neg R))$
 \wedge $(P_6 \rightarrow (P_1 \wedge P_2)) \wedge (P_4 \rightarrow (\neg Q \vee P))$
 \wedge $(P_7 \rightarrow (P_1 \wedge P_4)) \wedge (P_5 \rightarrow (P \vee R))$

F is satisfiable iff the following formula is satisfiable:

$$P_F$$
 \wedge $(P_F \rightarrow (P_8 \wedge P_5) \wedge (P_1 \rightarrow (Q \wedge \neg P))$
 \wedge $(P_8 \rightarrow (P_6 \vee P_7)) \wedge (P_2 \rightarrow (\neg Q \vee \neg R))$
 \wedge $(P_6 \rightarrow (P_1 \wedge P_2)) \wedge (P_4 \rightarrow (\neg Q \vee P))$
 \wedge $(P_7 \rightarrow (P_1 \wedge P_4)) \wedge (P_5 \rightarrow (P \vee R))$

Step 4: Compute the CNF (at most 3 literals per clause)

$$P_{F} \wedge (\neg P_{F} \vee P_{8}) \wedge (\neg P_{F} \vee P_{5}) \wedge (\neg P_{1} \vee Q) \wedge (\neg P_{1} \vee \neg P)$$

$$\wedge (\neg P_{8} \vee P_{6} \vee P_{7}) \wedge (\neg P_{2} \vee \neg Q \vee \neg R)$$

$$\wedge (\neg P_{6} \vee P_{1}) \wedge (\neg P_{6} \vee P_{2}) \wedge (\neg P_{4} \vee \neg Q \vee P)$$

$$\wedge (\neg P_{7} \vee P_{1}) \wedge (\neg P_{7} \vee P_{4}) \wedge (\neg P_{5} \vee P \vee R)$$

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete

Polynomial reduction from 3-CNF-SAT to CNF-SAT:

f(F) = F for every formula in 3-CNF-SAT and \perp otherwise.

$$F \in 3$$
-CNF-SAT iff $f(F) = F \in CNF$ -SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF-SAT, k > 3

For every formula in 3-CNF-SAT:

$$f(F) = F'$$
 (where F' is obtained from F by replacing a literal L with $\underbrace{L \vee \cdots \vee L}_{k-2 \text{ times}}$).

 $f(w) = \perp$ otherwise.

$$F \in 3$$
-CNF-SAT iff $f(F) = F' \in k$ -CNF-SAT (because $F' \equiv F$)

Examples of problems in P

Theorem

The following problems are in P:

- (1) DNF
- (2) k-DNF for all k
- (3) 2-CNF
- (1) Let $F = (L_1^1 \wedge \cdots \wedge L_{n_1}^1) \vee \cdots \vee (L_1^m \wedge \cdots \wedge L_{n_m}^m)$ be a formula in DNF.

F is satisfiable iff for some $i: (L_1^i \wedge \cdots \wedge L_{n_1}^i)$ is satisfiable. A conjunction of literals is satisfiable iff it does not contain complementary literals.

- (2) follows from (1)
- (3) Finite set of 2-CNF formulae over a finite set of propositional variables. Resolution \mapsto at most quadratically many inferences needed.

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling

Definition

A clique in a graph G is a complete subgraph of G.

Clique = $\{(G, k) \mid G \text{ is an undirected graph which has a clique of size } k\}$

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in NP:

We can construct for instance an NTM which accepts Clique.

- M builds a set V' of nodes (subset of the nodes of G) by choosing k nodes of G (we say that M "guesses" V').
- M checks for all nodes in V' if there are nodes to all other nodes. (this can be done in polynomial time)

[&]quot;guess a subgraph with k vertices; check in polynomial time that it is a clique"

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that 3-CNF-SAT \leq_{pol} Clique.

Let \mathcal{G} be the set of all undirected graphs. We want to construct a map f (DTM computable in polynomial time) which associates with every formula F a pair $(G_F, k_F) \in \mathcal{G} \times \mathbb{N}$ such that

 $F \in 3$ -CNF-SAT iff G_F has a clique of size k_F .

$$F \in 3\text{-CNF} \Rightarrow F = (L_1^1 \vee L_2^1 \vee L_3^1) \wedge \cdots \wedge (L_1^m \vee L_2^m \vee L_3^m)$$

F satisfiable iff there exists an assignment \mathcal{A} such that in every clause in F at least one literal is true and it is impossible that P and $\neg P$ are true at the same time.

Theorem Clique is NP-complete.

Proof: (ctd.) Let $k_F := m$ (the number of clauses). We construct G_F as follows:

- **Vertices:** all literals in *F*.
- Edges: We have an edge between two literals if they (i) can become true in the same assignment and (ii) belong to different clauses.

Then:

- (1) f(F) is computable in polynomial time.
- (2) The following are equivalent:
- (a) G_F has a clique of size k_F .
- (b) There exists a set of nodes $\{L_{i_1}^1, \ldots, L_{i_m}^m\}$ in G_F which does not contain complementary literals.
- (c) There exists an assignment which makes F true.
- (d) F is satisfiable.

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Can a graph be colored with three colors?
- 5. Is a (un)directed graph hamiltonian?
- 6. Multiprocessor scheduling

Definition (Rucksack problem)

A rucksack problem consists of:

- n objects with weights a_1, \ldots, a_n
- a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

Rucksack =
$$\{(b, a_1, ..., a_n) \in \mathbb{N}^{n+1} \mid \exists I \subseteq \{1, ..., n\} \ s.t. \ \sum_{i \in I} a_i = b\}$$

Theorem Rucksack is NP-complete.

- Proof: (1) Rucksack is in NP: We guess I and check whether $\sum_{i \in I} a_i = b$
- (2) Rucksack is NP-hard: We show that 3-CNF-SAT \prec_{pol} Rucksack.

Construct $f: 3\text{-CNF} \to \mathbb{N}^*$ as follows.

Consider a 3-CNF formula $F = (L_1^1 \vee L_2^1 \vee L_3^1) \wedge \cdots \wedge (L_1^m \vee L_2^m \vee L_3^m)$

 $f(F) = (b, a_1, ..., a_n)$ where:

- (i) a_i encodes which atom occurs in which clause as follows: p_i positive occurrences; n_i negative occurrences (numbers with n + m positions)
 - first m digits of p_i : p_{i_j} how often i-th atom occurs positively in j-th clause
 - first m digits of n_i : n_{ij} how often i-th atom occurs negatively in j-th clause
 - last n digits of p_i , n_i : p_{i_j} , n_{i_j} which atom is referred by p_i p_i , n_i contain 1 at position m + i and 0 otherwise.

Let the set Prop of propositional variables consist of $\{x_1, x_2, x_3, x_4, x_5\}$.

$$F: (x_1 \vee \neg x_2 \vee x_4) \wedge (x_2 \vee x_2 \vee \neg x_5) \wedge (\neg x_3 \vee \neg x_1 \vee x_4)$$

$$p_1 = 100 \ 10000$$
 $n_1 = 001 \ 10000$

$$p_2 = 020 \ 01000$$
 $n_2 = 100 \ 01000$

$$p_3 = 000 \ 00100$$
 $n_3 = 001 \ 00100$

$$p_4 = 101 \ 00010$$
 $n_4 = 000 \ 00010$

$$p_5 = 000 \ 00001$$
 $n_5 = 010 \ 00001$

Satisfying assignment: $A(x_1)=A(x_2)=A(x_5)=1$ and $A(x_3)=A(x_4)=0$.

$$p_1 + p_2 + p_5 + n_3 + n_4 = \underbrace{121}_{1111}$$

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional variable x_i mapped to 0 the number n_i and for every propositional variable x_i mapped to 1 the number p_i .

The sum of these numbers is $b_1 ldots b_m extstyle extstyle$

so
$$b_1 \dots b_m \underbrace{1 \dots 1}_n < \underbrace{4 \dots 4}_m \underbrace{1 \dots 1}_n$$

Let
$$b := \underbrace{4 \dots 4}_{m} \underbrace{1 \dots 1}_{n}$$
. We choose $\{a_1, \dots, a_k\} = \{p_1, \dots, p_n\} \cup \{n_1, \dots, n_n\} \cup C$.

The role of the numbers in $C = \{c_1, \ldots, c_m, d_1, \ldots, d_m\}$ is to make the sum of the a_i s equal to b: $c_{i_j} = 1$ iff i = j; $d_{i_j} = 2$ iff i = j (they are zero otherwise).

$$f(F) \in \mathsf{Rucksack}$$
 iff a subset I of $\{a_1, \ldots, a_k\}$ adds up to b iff a subset I of $\{p_1, \ldots, p_n\} \cup \{n_1, \ldots, n_n\}$ adds up to $b_1 \ldots b_m 1 \ldots 1$ iff for a subset I of $\{p_1, \ldots, p_n\} \cup \{n_1, \ldots, n_n\}$ there exists an assignment \mathcal{A} with $\mathcal{A}(P_i) = \mathbf{1}(resp.\ 0)$ iff $p_i(resp.\ n_i)$ occurs in I iff F satisfiable

Summary

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Can a graph be colored with three colors?
- 5. Is a (un)directed graph hamiltonian?
- 6. Multiprocessor scheduling

more examples next time