Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 3)

31.01.2018

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Info

Sample exams and solutions can be found on the website of the exercise.

Question/Answer Session
preferences: Friday, 23.02 or Monday, 26.02 (in the morning) doodle in the next days.

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem
We need one problem we can start with! (for NP: SAT)

Reduction

Definition (Polynomial time reducibility)

Let L_{1}, L_{2} be languages.
L_{2} is polynomial time reducible to L_{1} (notation: $L_{2} \preceq_{\text {pol }} L_{1}$)
if there exists a polynomial time bounded DTM, which for every input w computes an output $f(w)$ such that

$$
w \in L_{2} \text { if and only if } f(w) \in L_{1}
$$

Lemma (Polynomial time reduction)

- Let L_{2} be polynomial time reducible to $L_{1}\left(L_{2} \preceq_{\text {pol }} L_{1}\right)$. Then:

If $L_{1} \in N P$ then $L_{2} \in N P$.
If $\quad L_{1} \in P$ then $L_{2} \in P$.

- The composition of two polynomial time reductions is again a polynomial time reduction.

Complete and hard problems

Definition (NP-complete, NP-hard)

- A language L is NP-hard (NP-difficult) if every language L^{\prime} in NP is reducible in polynomial time to L.
- A language L is NP-complete if:
$-L \in N P$
- L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

- A language L is PSPACE-hard (PSPACE-difficult) if every language L^{\prime} in PSPACE is reducible in polynomial time to L.
- A language L is PSPACE-complete if:
$-L \in P S P A C E$
$-L$ is PSPACE-hard

Complete and hard problems

Remarks:

- If we can prove that at least one NP-hard problem is in P then $P=N P$
- If $P \neq N P$ then no NP complete problem can be solved in polynomial time

Open problem: Is $\mathrm{P}=\mathrm{NP}$? (Millenium Problem)

How to show that a language L is NP-complete?

1. Prove that $L \in N P$
2. Find a language L^{\prime} known to be NP-complete and reduce it to L

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

$$
L^{\prime}=L_{\text {sat }}=\{w \mid w \text { is a satisfiable formula of propositional logic }\}
$$

Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

Idea of proof: Last lecture

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
2. Does a graph contain a clique of size k ? (Clique of size k)
3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
4. Can a graph be colored with three colors? (3-colorability)
5. Has a set of integers a subset with sum x ? (subset sum)
6. Rucksack problem (knapsack)
7. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
2. Does a graph contain a clique of size k ? (Clique of size k)
3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
4. Can a graph be colored with three colors? (3-colorability)
5. Has a set of integers a subset with sum x ? (subset sum)
6. Rucksack problem (knapsack)
7. Multiprocessor scheduling

Examples of NP-complete problems

Definition (CNF, DNF, k-CNF, k-DNF)
DNF: A formula is in DNF if it has the form

$$
\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right)
$$

CNF: $\quad A$ formula is in CNF if it has the form

$$
\left(L_{1}^{1} \vee \cdots \vee L_{n_{1}}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee \cdots \vee L_{n_{m}}^{m}\right)
$$

k-DNF: A formula is in k-DNF if it is in DNF and all its conjunctions have k literals
k-CNF: A formula is in k-CNF if it is in CNF and all its disjunctions have k literals

Examples of NP-complete problems

$$
\begin{aligned}
& \text { SAT }=\{w \mid w \text { is a satisfiable formula of propositional logic }\} \\
& \text { CNF-SAT }=\{w \mid w \text { is a satisfiable formula of propositional logic in CNF }\} \\
& k \text {-CNF-SAT }=\{w \mid w \text { is a satisfiable formula of propositional logic in } k \text {-CNF }\}
\end{aligned}
$$

Examples of NP-complete problems

```
Theorem
The following problems are in NP and are NP-complete:
(1) SAT
(2) CNF-SAT
(3) \(k\)-CNF-SAT for \(k \geq 3\)
```


Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:
(1) SAT
(2) CNF-SAT
(3) k-CNF-SAT for $k \geq 3$

Proof: (1) SAT is NP-complete by Cook's theorem.
CNF-SAT and k-CNF-SAT are clearly in NP.
(3) We show that 3-CNF-SAT is NP-hard. For this, we construct a polynomial reduction of SAT to 3-CNF-SAT.

Examples of NP-complete problems

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.
Let F be a propositional formula of length n
Step 1 Move negation inwards (compute the negation normal form) $\quad \mapsto O(n)$
Step 2 Fully bracket the formula
$\mapsto O(n)$
$P \wedge Q \wedge R \mapsto(P \wedge Q) \wedge R$
Step 3 Starting from inside out replace subformula $Q \circ R$ with a new propositional variable $P_{Q \circ R}$ and add the formula
$P_{Q \circ R} \rightarrow(Q \circ R)$ and $(Q \circ R) \rightarrow P_{Q \circ R}(\circ \in\{\vee, \wedge\})$
Step 4 Write all formulae above as clauses $\mapsto \operatorname{Rename}(F)$
Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be defined by:
$f(F)=P_{F} \wedge \operatorname{Rename}(F)$ if F is a well-formed formula and $f(w)=\perp$ otherwise. Then:
$F \in$ SAT iff F is a satisfiable formula in prop. logic iff $P_{F} \wedge \operatorname{Rename}(F)$ is satisfiable iff $f(F) \in 3-C N F-S A T$

Example

Let F be the following formula:

$$
[(Q \wedge \neg P \wedge \neg(\neg(\neg Q \vee \neg R))) \vee(Q \wedge \neg P \wedge \neg(Q \wedge \neg P))] \wedge(P \vee R) .
$$

Step 1: After moving negations inwards we obtain the formula:

$$
F_{1}=[(Q \wedge \neg P \wedge(\neg Q \vee \neg R)) \vee(Q \wedge \neg P \wedge(\neg Q \vee P))] \wedge(P \vee R)
$$

Step 2: After fully bracketing the formula we obtain:

$$
F_{2}=[((Q \wedge \neg P) \wedge(\neg Q \vee \neg R)) \vee((Q \wedge \neg P) \wedge(\neg Q \vee P)] \wedge(P \vee R)
$$

Step 3: Replace subformulae with new propositional variables (starting inside).

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge\left(P_{F} \leftrightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge & \left(P_{1} \leftrightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \leftrightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge\left(P_{2} \leftrightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \leftrightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge\left(P_{4} \leftrightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \leftrightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge\left(P_{5} \leftrightarrow(P \vee R)\right)
\end{array}
$$

can further exploit polarity

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge\left(P_{F} \rightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge & \left(P_{1} \rightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \rightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge\left(P_{2} \rightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \rightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge\left(P_{4} \rightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \rightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge\left(P_{5} \rightarrow(P \vee R)\right)
\end{array}
$$

Example

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge\left(P_{F} \rightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge & \left(P_{1} \rightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \rightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge\left(P_{2} \rightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \rightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge\left(P_{4} \rightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \rightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge\left(P_{5} \rightarrow(P \vee R)\right)
\end{array}
$$

Step 4: Compute the CNF (at most 3 literals per clause)

$$
\begin{array}{rlrl}
P_{F} & \wedge & \left(\neg P_{F} \vee P_{8}\right) \wedge\left(\neg P_{F} \vee P_{5}\right) & \\
& \wedge\left(\neg P_{1} \vee Q\right) \wedge\left(\neg P_{1} \vee \neg P\right) \\
& \wedge\left(\neg P_{8} \vee P_{6} \vee P_{7}\right) & & \wedge\left(\neg P_{2} \vee \neg Q \vee \neg R\right) \\
& \wedge\left(\neg P_{6} \vee P_{1}\right) \wedge\left(\neg P_{6} \vee P_{2}\right) & & \wedge\left(\neg P_{4} \vee \neg Q \vee P\right) \\
& \wedge\left(\neg P_{7} \vee P_{1}\right) \wedge\left(\neg P_{7} \vee P_{4}\right) & & \wedge\left(\neg P_{5} \vee P \vee R\right)
\end{array}
$$

Examples of NP-complete problems

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete
Polynomial reduction from 3-CNF-SAT to CNF-SAT:
$f(F)=F$ for every formula in 3-CNF-SAT and \perp otherwise.
$F \in 3-C N F-S A T$ iff $f(F)=F \in$ CNF-SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF-SAT, $k>3$
For every formula in 3-CNF-SAT:
$f(F)=F^{\prime}$ (where F^{\prime} is obtained from F by replacing a literal L with $\underbrace{L \vee \cdots \vee L}_{k-2 \text { times }}$).
$f(w)=\perp$ otherwise.

$$
F \in 3-C N F-S A T \text { iff } f(F)=F^{\prime} \in k \text {-CNF-SAT } \quad \text { (because } F^{\prime} \equiv F \text {) }
$$

Examples of problems in P

Theorem

The following problems are in P:
(1) DNF
(2) k-DNF for all k
(3) 2-CNF
(1) Let $F=\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right)$ be a formula in DNF.
F is satisfiable iff for some $i:\left(L_{1}^{i} \wedge \cdots \wedge L_{n_{1}}^{i}\right)$ is satisfiable. A conjunction of literals is satisfiable iff it does not contain complementary literals.
(2) follows from (1)
(3) Finite set of 2-CNF formulae over a finite set of propositional variables.

Resolution \mapsto at most quadratically many inferences needed.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition

A clique in a graph G is a complete subgraph of G.

Clique $=\{(G, k) \mid G$ is an undirected graph which has a clique of size $k\}$

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in $N P$:
We can construct for instance an NTM which accepts Clique.

- M builds a set V^{\prime} of nodes (subset of the nodes of G) by choosing k nodes of G (we say that M "guesses" V^{\prime}).
- M checks for all nodes in V^{\prime} if there are nodes to all other nodes. (this can be done in polynomial time)
"guess a subgraph with k vertices; check in polynomial time that it is a clique"

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that 3-CNF-SAT $\preceq_{\text {pol }}$ Clique.

Let \mathcal{G} be the set of all undirected graphs. We want to construct a map f (DTM computable in polynomial time) which associates with every formula F a pair $\left(G_{F}, k_{F}\right) \in \mathcal{G} \times \mathbb{N}$ such that
$F \in$ 3-CNF-SAT iff $\quad G_{F}$ has a clique of size k_{F}.
$F \in 3-C N F \Rightarrow F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee L_{2}^{m} \vee L_{3}^{m}\right)$
F satisfiable iff there exists an assignment \mathcal{A} such that in every clause in F at least one literal is true and it is impossible that P and $\neg P$ are true at the same time.

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (ctd.) Let $k_{F}:=m$ (the number of clauses). We construct G_{F} as follows:

- Vertices: all literals in F.
- Edges: We have an edge between two literals if they (i) can become true in the same assignment and (ii) belong to different clauses.

Then:
(1) $f(F)$ is computable in polynomial time.
(2) The following are equivalent:
(a) G_{F} has a clique of size k_{F}.
(b) There exists a set of nodes $\left\{L_{i_{1}}^{1}, \ldots, L_{i_{m}}^{m}\right\}$ in G_{F} which does not contain complementary literals.
(c) There exists an assignment which makes F true.
(d) F is satisfiable.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

- n objects with weights a_{1}, \ldots, a_{n}
- a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

$$
\text { Rucksack }=\left\{\left(b, a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1} \mid \exists / \subseteq\{1, \ldots, n\} \text { s.t. } \sum_{i \in I} a_{i}=b\right\}
$$

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether $\sum_{i \in I} a_{i}=b$
(2) Rucksack is NP-hard: We show that 3-CNF-SAT $\prec_{\text {pol }}$ Rucksack.

Construct $f: 3-\mathrm{CNF} \rightarrow \mathbb{N}^{*}$ as follows.
Consider a 3-CNF formula $F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee L_{2}^{m} \vee L_{3}^{m}\right)$
$f(F)=\left(b, a_{1}, \ldots, a_{n}\right)$ where:
(i) a_{i} encodes which atom occurs in which clause as follows:
p_{i} positive occurrences; n_{i} negative occurrences (numbers with $n+m$ positions)

- first m digits of $p_{i}: p_{i j}$ how often i-th atom occurs positively in j-th clause
- first m digits of $n_{i}: n_{i j}$ how often i-th atom occurs negatively in j-th clause
- last n digits of $p_{i}, n_{i}: p_{i_{j}}, n_{i j}$ which atom is referred by p_{i}
p_{i}, n_{i} contain 1 at position $m+i$ and 0 otherwise.

Example

Let the set Prop of propositional variables consist of $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.

$$
\begin{array}{ll}
F: & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{2} \vee \neg x_{5}\right) \wedge\left(\neg x_{3} \vee \neg x_{1} \vee x_{4}\right) \\
p_{1}=10010000 & n_{1}=00110000 \\
p_{2}=02001000 & n_{2}=10001000 \\
p_{3}=00000100 & n_{3}=00100100 \\
p_{4}=10100010 & n_{4}=00000010 \\
p_{5}=00000001 & n_{5}=01000001
\end{array}
$$

Satisfying assignment: $\mathcal{A}\left(x_{1}\right)=\mathcal{A}\left(x_{2}\right)=\mathcal{A}\left(x_{5}\right)=1$ and $\mathcal{A}\left(x_{3}\right)=\mathcal{A}\left(x_{4}\right)=0$.

$$
p_{1}+p_{2}+p_{5}+n_{3}+n_{4}=\underbrace{121}_{\begin{array}{c}
\text { all digits } \leq 3 \\
\text { because } 3 \text { lit. } / \text { clause }
\end{array}} \underbrace{11111}_{\text {all atoms considered }}
$$

Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment \mathcal{A}, we take for every propositional variable x_{i} mapped to 0 the number n_{i} and for every propositional variable x_{i} mapped to 1 the number p_{i}.

The sum of these numbers is $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n \text { times }}$ with $b_{i} \leq 3$,
so $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n}<\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$
Let $b:=\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$. We choose $\left\{a_{1}, \ldots, a_{k}\right\}=\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\} \cup C$.
The role of the numbers in $C=\left\{c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{m}\right\}$ is to make the sum of the $a_{i} s$ equal to b : $c_{i j}=1$ iff $i=j ; d_{i j}=2$ iff $i=j$ (they are zero otherwise).
$f(F) \in$ Rucksack iff a subset I of $\left\{a_{1}, \ldots, a_{k}\right\}$ adds up to b
iff a subset $/$ of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ adds up to $b_{1} \ldots b_{m} 1 \ldots 1$
iff for a subset I of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ there exists an assignment
\mathcal{A} with $\mathcal{A}\left(P_{i}\right)=1($ resp. 0$)$ iff $p_{i}\left(\right.$ resp. $\left.n_{i}\right)$ occurs in I iff $\quad F$ satisfiable

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling
more examples next time
