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Info

Sample exams and solutions can be found on the website of the exercise.

Question/Answer Session

preferences: Friday, 23.02 or Monday, 26.02 (in the morning)

doodle in the next days.
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Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity
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Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

We need one problem we can start with! (for NP: SAT)
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Reduction

Definition (Polynomial time reducibility)

Let L1, L2 be languages.

L2 is polynomial time reducible to L1 (notation: L2 �pol L1)

if there exists a polynomial time bounded DTM, which for every input w computes

an output f (w) such that

w ∈ L2 if and only if f (w) ∈ L1

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a polynomial time

reduction.
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Complete and hard problems

Definition (NP-complete, NP-hard)

• A language L is NP-hard (NP-difficult) if every language L′ in NP is reducible

in polynomial time to L.

• A language L is NP-complete if:

– L ∈ NP

– L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

• A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

• A language L is PSPACE-complete if:

– L ∈ PSPACE

– L is PSPACE-hard
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Complete and hard problems

Remarks:

• If we can prove that at least one NP-hard problem is in P then P = NP

• If P 6= NP then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

L′ = Lsat = {w | w is a satisfiable formula of propositional logic}
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Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Idea of proof: Last lecture

8



Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)

2. Does a graph contain a clique of size k? (Clique of size k)

3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)

4. Can a graph be colored with three colors? (3-colorability)

5. Has a set of integers a subset with sum x? (subset sum)

6. Rucksack problem (knapsack)

7. Multiprocessor scheduling
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Examples of NP-complete problems

Definition (CNF, DNF, k-CNF, k-DNF)

DNF: A formula is in DNF if it has the form

(L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm )

CNF: A formula is in CNF if it has the form

(L11 ∨ · · · ∨ L1n1) ∧ · · · ∧ (Lm1 ∨ · · · ∨ Lmnm )

k-DNF: A formula is in k-DNF if it is in DNF and

all its conjunctions have k literals

k-CNF: A formula is in k-CNF if it is in CNF and

all its disjunctions have k literals
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Examples of NP-complete problems

SAT = {w | w is a satisfiable formula of propositional logic}

CNF-SAT = {w | w is a satisfiable formula of propositional logic in CNF}

k-CNF-SAT = {w | w is a satisfiable formula of propositional logic in k-CNF}
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Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3
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Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3

Proof: (1) SAT is NP-complete by Cook’s theorem.

CNF-SAT and k-CNF-SAT are clearly in NP.

(3) We show that 3-CNF-SAT is NP-hard. For this, we construct a

polynomial reduction of SAT to 3-CNF-SAT.
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Examples of NP-complete problems

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.

Let F be a propositional formula of length n

Step 1 Move negation inwards (compute the negation normal form) 7→ O(n)

Step 2 Fully bracket the formula 7→ O(n)

P ∧ Q ∧ R 7→ (P ∧ Q) ∧ R

Step 3 Starting from inside out replace subformula Q o R with a

new propositional variable PQ o R and add the formula

PQ o R → (Q o R) and (Q o R) → PQ o R (o ∈ {∨,∧}) 7→ O(p(n))

Step 4 Write all formulae above as clauses 7→ Rename(F ) 7→ O(n)

Let f : Σ∗ → Σ∗ be defined by:

f (F ) = PF ∧ Rename(F ) if F is a well-formed formula

and f (w) = ⊥ otherwise. Then:

F ∈ SAT iff F is a satisfiable formula in prop. logic iff PF ∧ Rename(F ) is satisfiable

iff f (F ) ∈ 3-CNF-SAT
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Example

Let F be the following formula:

[(Q ∧ ¬P ∧ ¬(¬(¬Q ∨ ¬R))) ∨ (Q ∧ ¬P ∧ ¬(Q ∧ ¬P))] ∧ (P ∨ R).

Step 1: After moving negations inwards we obtain the formula:

F1 = [(Q ∧ ¬P ∧ (¬Q ∨ ¬R)) ∨ (Q ∧ ¬P ∧ (¬Q ∨ P))] ∧ (P ∨ R)

Step 2: After fully bracketing the formula we obtain:

F2 = [((Q ∧ ¬P) ∧ (¬Q ∨ ¬R)) ∨ ((Q ∧ ¬P) ∧ (¬Q ∨ P)] ∧ (P ∨ R)

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.
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Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF ↔ (P8 ∧ P5) ∧ (P1 ↔ (Q ∧ ¬P))

∧ (P8 ↔ (P6 ∨ P7)) ∧ (P2 ↔ (¬Q ∨ ¬R))

∧ (P6 ↔ (P1 ∧ P2)) ∧ (P4 ↔ (¬Q ∨ P))

∧ (P7 ↔ (P1 ∧ P4)) ∧ (P5 ↔ (P ∨ R))

can further exploit polarity
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Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))
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Example

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))

Step 4: Compute the CNF (at most 3 literals per clause)

PF ∧ (¬PF ∨ P8) ∧ (¬PF ∨ P5) ∧ (¬P1 ∨ Q) ∧ (¬P1 ∨ ¬P)

∧ (¬P8 ∨ P6 ∨ P7) ∧ (¬P2 ∨ ¬Q ∨ ¬R)

∧ (¬P6 ∨ P1) ∧ (¬P6 ∨ P2) ∧ (¬P4 ∨ ¬Q ∨ P)

∧ (¬P7 ∨ P1) ∧ (¬P7 ∨ P4) ∧ (¬P5 ∨ P ∨ R)
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Examples of NP-complete problems

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete

Polynomial reduction from 3-CNF-SAT to CNF-SAT:

f (F ) = F for every formula in 3-CNF-SAT and ⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F ) = F ∈ CNF-SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF-SAT, k > 3

For every formula in 3-CNF-SAT:

f (F ) = F ′ (where F ′ is obtained from F by replacing a literal L with L ∨ · · · ∨ L
︸ ︷︷ ︸

k−2 times

).

f (w) =⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F ) = F ′ ∈ k-CNF-SAT (because F ′ ≡ F )
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Examples of problems in P

Theorem

The following problems are in P:

(1) DNF

(2) k-DNF for all k

(3) 2-CNF

(1) Let F = (L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm ) be a formula in DNF.

F is satisfiable iff for some i : (Li1 ∧ · · · ∧ Lin1) is satisfiable. A conjunction

of literals is satisfiable iff it does not contain complementary literals.

(2) follows from (1)

(3) Finite set of 2-CNF formulae over a finite set of propositional variables.

Resolution 7→ at most quadratically many inferences needed.
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling
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Examples of NP-complete problems

Definition

A clique in a graph G is a complete subgraph of G .

Clique = {(G , k) | G is an undirected graph which has a clique of size k}

23



Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in NP:

We can construct for instance an NTM which accepts Clique.

• M builds a set V ′ of nodes (subset of the nodes of G) by choosing k

nodes of G (we say that M “guesses” V ′).

• M checks for all nodes in V ′ if there are nodes to all other nodes.

(this can be done in polynomial time)

“guess a subgraph with k vertices; check in polynomial time that it is a clique”
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Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that

3-CNF-SAT �pol Clique.

Let G be the set of all undirected graphs. We want to construct a map f

(DTM computable in polynomial time) which associates with every formula

F a pair (GF , kF ) ∈ G × N such that

F ∈ 3-CNF-SAT iff GF has a clique of size kF .

F ∈ 3-CNF ⇒ F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3 )

F satisfiable iff there exists an assignment A such that in every clause in F

at least one literal is true and it is impossible that P and ¬P are true at the

same time.
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Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (ctd.) Let kF := m (the number of clauses). We construct GF as follows:

• Vertices: all literals in F .

• Edges: We have an edge between two literals if they (i) can become true in the

same assignment and (ii) belong to different clauses.

Then:

(1) f (F ) is computable in polynomial time.

(2) The following are equivalent:

(a) GF has a clique of size kF .

(b) There exists a set of nodes {L1
i1
, . . . , Lm

im
} in GF which does not contain

complementary literals.

(c) There exists an assignment which makes F true.

(d) F is satisfiable.
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Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

• n objects with weights a1, . . . , an

• a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects

with total weight b.

Rucksack = {(b, a1, . . . , an) ∈ Nn+1 |

E

I ⊆ {1, . . . , n} s.t.
∑

i∈I ai = b}
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Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether
∑

i∈I ai = b

(2) Rucksack is NP-hard: We show that 3-CNF-SAT ≺pol Rucksack.

Construct f : 3-CNF → N
∗ as follows.

Consider a 3-CNF formula F = (L1
1 ∨ L1

2 ∨ L1
3) ∧ · · · ∧ (Lm

1 ∨ Lm
2 ∨ Lm

3 )

f (F ) = (b, a1, . . . , an) where:

(i) ai encodes which atom occurs in which clause as follows:

pi positive occurrences; ni negative occurrences (numbers with n + m positions)

– first m digits of pi : pij how often i-th atom occurs positively in j-th clause

– first m digits of ni : nij how often i-th atom occurs negatively in j-th clause

– last n digits of pi , ni : pij , nij which atom is referred by pi

pi , ni contain 1 at position m + i and 0 otherwise.
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Example

Let the set Prop of propositional variables consist of {x1, x2, x3, x4, x5}.

F : (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x1 ∨ x4)

p1 = 100 10000 n1 = 001 10000

p2 = 020 01000 n2 = 100 01000

p3 = 000 00100 n3 = 001 00100

p4 = 101 00010 n4 = 000 00010

p5 = 000 00001 n5 = 010 00001

Satisfying assignment: A(x1)=A(x2)=A(x5)=1 and A(x3)=A(x4)=0.

p1 + p2 + p5 + n3 + n4 = 121
︸︷︷︸

all digits ≤3
because 3 lit./clause

11111
︸ ︷︷ ︸

all 1
all atoms considered
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Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional

variable xi mapped to 0 the number ni and for every propositional variable xi mapped

to 1 the number pi .

The sum of these numbers is b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n times

with bi ≤ 3,

so b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n

< 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

Let b := 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

. We choose {a1, . . . , ak} = {p1, . . . , pn} ∪ {n1, . . . , nn} ∪ C .

The role of the numbers in C = {c1, . . . , cm, d1, . . . , dm} is to make the sum of the

ai s equal to b: cij = 1 iff i = j ; dij = 2 iff i = j (they are zero otherwise).

f (F ) ∈ Rucksack iff a subset I of {a1, . . . , ak} adds up to b

iff a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} adds up to b1 . . . bm1 . . . 1

iff for a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} there exists an assignment

A with A(Pi ) = 1(resp. 0) iff pi (resp. ni ) occurs in I iff F satisfiable
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Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

more examples next time
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