Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (1)

22.11.2017

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

— P

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea
e Simple (“atomic”) functions are computable

e “Combinations” of computable functions are computable

(We consider functions f : N = N, k > 0)

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea
e Simple (“atomic”) functions are computable

e “Combinations” of computable functions are computable

(We consider functions f : N = N, k > 0)

Questions
e Which are the atomic functions?

e Which combinations are possible?

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

The constant null
0:N° - Nwith0() =0

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

The constant null
0:N° - Nwith0() =0

Successor function

+1:N!' - Nwith +1(n)=n+1forall neN

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

The constant null
0:N° - Nwith0() =0

Successor function

+1:N!' - Nwith +1(n)=n+1forall neN

Projection function

7K - N¥ 5 N with w;‘(nl,...,nk) = n;

I

Recursive functions

Notation:

We will write n for the tuple (n1,...,nx), kK > 0.

10

Recursive functions: Composition

(" .
Composition:

If the functions: g :N" — N r>1

hi :NK > N,...,h : Nt 5 N k>0
are primitive recursive resp. u-recursive, then

f: N> N
defined for every n € N¥ by:

f(n) = g(h1(n), ..., h(n))

Is also primitive recursive resp. u-recursive.

.

Notation without arguments: f = go (hy,..., h/)

11

Primitive recursive functions

Until now:
e Atomic functions (Null, Successor, Projections)

e Composition

Next:
e Primitive recursion

Definition of primitive recursive functions

12

Primitive recursive functions

-

\

Primitive recursion
If the functions

g:NF >N (k>0)
h:Nkt2 5 N

are primitive recursive,
then the function

f: Nkl 5 N with £(n,0) = g(n)
f(n,m+1) = h(n,m, f(n, m))

Is also primitive recursive.

13

Primitive recursive functions

(
Primitive recursion

If the functions
g:NF >N (k>0)
h:Nk2 5 N

are primitive recursive,

then the function

f: Nt 5 Nwith f(n,0) = g(n)
f(n,m+1) = h(n,m, f(n, m))

Is also primitive recursive.

\

Notation without arguments: f = PR|[g, h]

14

Primitive recursive functions

Definition (Primitive recursive functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)

are primitive recursive.

15

Primitive recursive functions

Definition (Primitive recursive functions)

e Atomic functions: The functions
— Null O
— Successor +1
. . k .
— Projection 7¢ (1 <i<k)
are primitive recursive.

e Composition: The functions obtained by composition from primitive
recursive functions are primitive recursive.

16

Primitive recursive functions

_

Definition (Primitive recursive functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)

are primitive recursive.

e Composition: The functions obtained by composition from primitive
recursive functions are primitive recursive.

e Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

J

Notation: P = The set of all primitive recursive functions

Arithmetical functions: definitions

f(n)=n+c
f(n) = n

f(n,m)=n+m
f(n,m)=n—1
f(n,m)=n—m

f(n,m)=n+*m

18

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

19

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0
F(n) = (+1)(..((+1)(n)))

c times

20

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f=(+1)o---o(+1)

N~

c times

21

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—lz

N~

c times

Identity
f:N—N, with f(n) =n

22

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—12

N~

c times

Identity

f =i

23

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—12

N~

c times

Identity

f =i

f(n,m)=n+m

24

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—lz

N~

c times

Identity

f =i

f(n,m)=n+m
f(n,0) =n
f(n,m+1) = (+1)(f(n, m))

25

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—lz

v

c times

Identity
f =i
f(n,m)=n+m
f(n,0) =n g(n)=n g =mj

f(n,m+1)=(+1)(f(n, m)) h(n, m, k) = +1(k) h=(+1)on3

26

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S+1)o---O(+1Z

v

c times

Identity
f =i
f(n,m)=n+m
f(n,0) =n g(n)=n g =mj

f(n,m+1)=(+1)(f(n, m)) h(n, m, k) = +1(k) h=(+1)on3

f = PR[xd, (+1) o 7]

27

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---o(—|—lz

N~

c times

Identity

f =i

f(n,m)=n+m
f = PRIr1, (+1) o m3]

28

Arithmetical functions: definitions

f(n) =n-—1

29

Arithmetical functions: definitions

f(n) =n-—1

f(0) =0
f(n+1)=n

30

Arithmetical functions: definitions

f(n) =n-—1
f(0) =0 g() = g=0
f(n+1)=n h(n, k) =n h=mn?

31

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, 7]

f(n,m)=n—m

32

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, 7]
f(n,m)=n—m
f(n,0) =n g(n)=n g =7
f(n,m+1)=1f(n,m)—1 h(n,m, k) =k —1 h=(-1)omn3

f = PR[ni,(—1) o m3]

33

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, 7]

f(n,m)=n—m

f = PR[ni,(—1) o m3]

f(n,m)=n*xm

34

Arithmetical functions: definitions

f(n) =n-—1
f = PRI0, 7]

f(n,m)=n—m

f = PR[ni,(—1) o m3]

f(n,m)=nx*xm

f(n,0) =0 g(n)=20
f(n,m—+1)=f(n,m)+n h(n,m, k) = k+ n

f = PR[0, + o (73, 73)]

h=+o(m3,)

35

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, 7]
f(n,m)=n—m
f = PR[ni,(—1) o m3]
f(n,m)=n*xm

f = PR[O, + o (73, 77)]

36

Re-ordering/Omitting /Repeating Arguments

r

.

Lemma The set of primitive recursive functions is closed under:
e Re-ordering
e Omitting
e Repeating

of arguments when composing functions.

37

Re-ordering/Omitting /Repeating Arguments

r

.

Lemma The set of primitive recursive functions is closed under:
e Re-ordering
e Omitting
e Repeating

of arguments when composing functions.

Proof: (Idea)

A tuple of arguments n’ = (n;, ..., n;) obtained from n = (ny, ..., ny) by

re-ordering, omitting or repeating components can be represented as:

n' = (w,’i (n),..., w,{; (n))

38

Additional Arguments

f

\.

Lemma. Assume f : N — N is primitive recursive.
Then, for every p € N, the function f’ : N¥ x NP — N defined for every n € Nk
and every m € NP by:

f'(n,m) = f(n)

IS primitive recursive.

39

Additional Arguments

()
Lemma. Assume f : N¥ = N js primitive recursive.
Then, for every p € N, the function f’ : N¥ x NP — N defined for every n € Nk
and every m € NP by:

f'(n,m) = f(n)
IS primitive recursive.
\. J
Proof:

Case 1: k = 0, i.e. f is a constant. Then f! : N x N — N with f!(n, m) = f(n) for
all m € N can be expressed by primitive recursion as follows:

F1(0)=f f! = PR[f, n5]
fi(n+1) = f(n) = m3(n, f*(n))
By iterating this construction p times we obtain extensions 2, >, ..., fP with

2,3, ...p additional arguments. The function f’ is fP.
Case 2: k #0. Letn=(ny,...,ng, my, ..., mp)

Then f'(n) = f(m{P(n), ..., 7 P(n)) = f o (xP, ..., 7 SP).

40

