
Advanced Topics in Theoretical Computer Science

Part 2: Register machines

8.11.2017

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

3



2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

4



2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

5



Register Machines

The register machine gets its name from its one or more “registers”:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a

single positive integer.

6



Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

7



Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code

8



Register Machines

Computation of a mod b (pseudocode)

r := a;

while r ≥ b do

r := r − b

end;

return r

9



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

10



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

11



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

12



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

13



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Which Input/Output?

14



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

15



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

• Data types:

– The natural numbers.

This is the only difference to normal computers

16



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

• Data types:

– The natural numbers.

This is the only difference to normal computers

• Data structures

– Unbounded but finite number of registers denoted x1, x2, x3 . . . , xn;

each register contains a natural number

(no arrays, objects, ...)

17



Register Machines

Settings (Informally)

• Atomic instructions:

– Increment/Decrement a register

18



Register Machines

Settings (Informally)

• Atomic instructions:

– Increment/Decrement a register

• Input/Output

– Input: n input values in the first n registers

All the other registers are 0 at the beginning.

– Output: In register n + 1.

19



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

20



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

21



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP instruction and a LOOP program.

22



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP program (and a LOOP instruc-

tion)

23



Example: WHILE Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are WHILE instructions and also WHILE programs.

• If P1,P2 are WHILE programs then

– P1;P2 is a WHILE program

• If P is a WHILE program then

– while xi 6= 0 do P end is a WHILE program (and a WHILE

instruction)

24



Example: GOTO Programs

Syntax Indexes (numbers for the lines in the program) j ≥ 0

Definition

• Atomic programs:

– xi := xi + 1

– xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

– if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

– j1 : I1; . . . ; jk : Ik is a GOTO program

25



Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.

26



Register Machines: State

Definition (State of a register machine)

The state s of a register machine is a map:

s : {xi | i ∈ N} → N

which associates with every register a natural number as value.

27



Register Machines: State

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi ) = m1 for all 1 ≤ i ≤ k

• s0(xi ) = 0 for all i > k

28



Register Machines: State

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi ) = m1 for all 1 ≤ i ≤ k

• s0(xi ) = 0 for all i > k

Definition (Output)

If a register machine started with the input m1, . . . ,mk ∈ N

halts in a state sterm then:

sterm(xk+1)

is the output of the machine.

29



Register Machines: Semantics

Definition (The semantics of a register machine)

The semantics ∆(P) of a register machine P is a (binary) relation

∆(P) ⊆ S × S

on the set S of all states of the machine.

(s1, s2)∈∆(P) means that if P is executed in state s1 then it halts in state s2.

30



Register Machines: Computed function

Definition (Computed function)

A register machine P computes a function

f : Nk → N

if and only if for all m1, . . . ,mk ∈ N the following holds:

If we start P with initial state with the input m1, . . . ,mk then:

• P terminates if and only if f (m1, . . . ,mk ) is defined

• If P terminates, then the output of P is f (m1, . . . ,mk )

• Additional condition (next page)

31



Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0

32



Register Machines: Computed function

Definition (Computed function) (ctd)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0

Consequence: A machine which does not fulfill the additional condition

(even only for some inputs) does not compute a function at all.

33



Register Machines: Computable function

Example:

The program:

P := loop x2 do x2 := x2 − 1 end; x2 := x2 + 1;

loop x1 do x1 := x1 − 1 end

does not compute a function: At the end, P has value 0 in x1 and 1 in x2.

34



Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

35



Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

36



Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

37



Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

• TM computable if there exists a Turing machine which computes f

38



Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

39



Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

Still not precise:

WHILE/GOTO/TM computable functions can also be partial

40



Register Machines: Computable function

LOOP = Set of all total LOOP computable functions

WHILE = Set of all total WHILE computable functions

GOTO = Set of all total GOTO computable functions

TM = Set of all total TM computable functions

WHILEpart = Set of all total or partial WHILE computable functions

GOTOpart = Set of all total or partial GOTO computable functions

TMpart = Set of all total or partial TM computable functions

41



Register Machines: Overview

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

42



LOOP Programs: Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP instruction and a LOOP program.

43



LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi ) = s1(xi ) + 1

– s2(xj ) = s1(xj ) for all j 6= i

44



LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi ) = s1(xi ) + 1

– s2(xj ) = s1(xj ) for all j 6= i

• ∆(xi := xi − 1)(s1, s2) if and only if:

– s2(xi ) =







s1(xi )− 1 if s1(xi ) > 0

0 if s1(xi ) = 0

– s2(xj ) = s1(xj ) for all j 6= i

45



LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(2) Sequential composition:

• ∆(P1;P2)(s1, s2) if and only if there exists s′ such that:

– ∆(P1)(s1, s
′)

– ∆(P2)(s
′, s2)

46



LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi ) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

47



LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi ) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

Remark:

The number of steps in the loop is the value of xi at the beginning of the

loop. Changes to xi during the loop are not relevant.

48



LOOP programs: Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input n1, . . . , nk if its

execution on this input terminates (in the sense above) after a finite number

of steps.

49



LOOP computable functions

Theorem. Every LOOP program terminates for every input.

50



LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof: By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi ) is fixed, no infinite loop is possible.

51



LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof:By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi ) is fixed, no infinite loop is possible.

Consequence: All LOOP computable functions are total.

52


