
Advanced Topics in Theoretical Computer Science

Part 4: Computability and (Un-)Decidability

19.12.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Last time

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata

2

Today

• Recapitulation: Turing machines and Turing computability

• Recursive functions

• Register machines (LOOP, WHILE, GOTO)

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata

3

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

• The halting problem for Turing machines

• The equivalence problem

Consequences:

• All problems about programs (TM) which are non-trivial

(in a certain sense) are undecidable (Theorem of Rice)

• Identify undecidable problems outside the world of Turing machines

– Validity/Satisfiability in First-Order Logic

– The Post Correspondence Problem

4

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

• The halting problem for Turing machines

• The equivalence problem

Consequences:

• All problems about programs (TM) which are non-trivial

(in a certain sense) are undecidable (Theorem of Rice)

• Identify undecidable problems outside the world of Turing machines

– Validity/Satisfiability in First-Order Logic

– The Post Correspondence Problem

5

Computability and (Un-)decidability

The Theorem of Rice (informally)

Variant 1

For each non-trivial property P of languages of type 0:

It is undecidable, whether the language accepted by a Turing machine has

property P.

This variant will be formalized and proved in this lecture.

6

Computability and (Un-)decidability

The Theorem of Rice (informally)

Variant 2

For each non-trivial property P of (partial) functions:

It is undecidable, whether the function computed by a Turing machine has

property P.

Generalization of Variant 2:

The same holds for other computability models:

• algorithms

• Java programs

• λ expressions

• recursive functions

• etc.

7

Computability and (Un-)decidability

The Theorem of Rice (informally)

Variant 2

For each non-trivial property P of (partial) functions:

It is undecidable, whether the function computed by a Turing machine has

property P.

Generalization of Variant 2:

The same holds for other computability models:

• algorithms

• Java programs

• λ expressions

• recursive functions

• etc.

Examples of non-trivial properties of functions:

• Monotonicity: {f | f (i) ≤ f (i + 1) for all i}

• Equivalence: {f | f = g} for a given g

• Image: {f | j ∈ Im(f)} for a given j

• Square function {f | f (i) = i2 for all i}

8

Plan

• Recall: Acceptance and Decidability

• Recall: Undecidability results

The halting problem

Undecidability proofs via reduction

• The theorem of Rice (Variant 1)

9

Acceptance and Decidability

Acceptance

A DTM M accepts a language L if

• for every input word w ∈ L, M halts;

• for every input word w 6∈ L, M computes infinitely or hangs.

Deciding

A DTM M decides a language L if

• for every input word w ∈ L, M halts with band contents Y (yes)

• for every input word w 6∈ L, M halts with band contents N (no)

10

Acceptance and Decidability

Definition (Decidable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0; M=(K , Σ, δ, s) a DTM with Σ0 ⊆ Σ.

• M decides L if for all w ∈ Σ∗

0 : s, #w# ⊢∗

M

{

h, #Y# if w ∈ L

h, #N# if w 6∈ L

• L is called decidable if there exists a DTM which decides L.

Definition (Acceptable language)

Let L be a language over Σ0 with #,Y ,N 6 ∈Σ0; M=(K , Σ, δ, s) a DTM with Σ0⊆Σ.

• M accepts a word w ∈ Σ∗

0 if M always halts on input w .

• M accepts the language L if for all w ∈ Σ∗

0 , M accepts w iff w ∈ L.

• L is called acceptable (or semi-decidable) if there exists a DTM which accepts L.

11

Recursively enumerable

Definition (Recursively enumerable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0. Let M = (K , Σ, δ, s) be a DTM with

Σ0 ⊆ Σ.

• M enumerates L if there exists a state qB ∈ K (the blink state) such that:

L = {w ∈ Σ∗

0 |
E
u ∈ Σ∗; s, # ⊢∗

M
qB , #w#u}

• L is called recursively enumerable if there exists a DTM M which enumerates L.

12

Recursively enumerable

Attention: recursively enumerable 6= enumerable!

• L enumerable: there exists a surjective map of the natural numbers onto L.

• L recursively enumerable: the surjective map can be computed by a TM.

Because of the finiteness of the words and of the alphabet, all languages are

enumerable. But not all languages are recursively enumerable.

7→ Set of all languages is not enumerable; Turing machines can be enumerated.

Attention: recursively enumerable 6= decidable!

Examples: The following sets are recursively enumerable, but not decidable:

• The set of the Gödelisations of all halting Turing machines.

• The set of all terminating programs.

• The set of all valid formulae in predicate logic.

13

Acceptable/Recursively enumerable/Decidable

Theorem (Acceptable = Recursively enumerable)

A language is recursively enumerable iff it is acceptable.

Proposition

Every decidable language is acceptable.

Proposition

The complement of any decidable language is decidable.

Proposition (Characterisation of decidability)

A language L is decidable iff L and its complement are acceptable.

14

Recursively enumerable = Type 0

Formal languages are of type 0 if they can be generated by arbitrary

grammars (no restrictions).

Proposition

The recursively enumerable languages (i.e. the languages acceptable by

DTMs) are exactly the languages generated by arbitrary grammars (i.e.

languages of type 0).

15

Undecidability results

Undecidability results: Proof via reduction

Given L1, L2 languages

L1 known to be undecidable

To show L2 undecidable

Idea

Assume L2 decidable. Let M2 be a TM which decides L2.

We show that then we can construct a TM which decides L1.

For this, we have to find a computable function f which transforms all

elements of L1 (and only the elements of L1) into elements of L2, i.e.

A

w(w ∈ L1 iff f (w) ∈ L2)

Let Mf be the TM which computes f .

Construct M1 = Mf M2. Then M1 decides L1.

16

Undecidability proofs

Proof via reduction

Definition. L1, L2 languages. L1 ≤ L2 (L1 is reducible to L2) if there exists

a computable function f such that:

A

w(w ∈ L1 iff f (w) ∈ L2)

Theorem. If L1 ≤ L2 and L1 is undecidable then L2 is undecidable.

17

TM; Gödelisation; Gödel numbers

Gödelisation: Method for assigning with every Turing machine M a number or a

word (Gödel number or Gödel word) such that the Turing machine can be effectively

reconstructed from that number (or word).

Gödel word of a TM M: G(M)

Gödel numbers. We sketched a possibility of associating with every Turing Machine

M a unique Gödel number 〈M〉 ∈ N such that the coding function and the decoding

function are primitive recursive. Similarly for configurations of Turing machines.

Encoding words as natural numbers: If Σ = {a0, a1, . . . , am} and w = ai1 . . . ain is a

word over Σ then 〈w〉
l
= 〈i1, . . . , in〉 =

n
∏

j=1

p(j)
ij

This shows, in particular, that we can represent w.l.o.g. words as natural numbers and

languages as sets of natural numbers.

18

Undecidability of the halting problem

Theorem: HALT = {〈G(M),w〉 | M halts on input w} is not decidable.

19

Undecidability of the halting problem

Theorem: HALT = {〈G(M),w〉 | M halts on input w} is not decidable.

Theorem. K = {G(M) | M halts for input G(M)}

is acceptable but undecidable.

Proof: Similar to the proof of the halting problem.

20

Undecidability proofs: Example

Theorem: HALT = {〈G(M),w〉 | M halts on input w} is not decidable.

Theorem. K = {G(M) | M halts for input G(M)}

is acceptable but undecidable.

Reformulation using numbers instead of words:

Gödelization 7→ Gödel numbers

Let M0,M1, . . . ,Mn, . . . be an enumeration of all Turing Machines

Mn is the TM with Gödel number n.

HALT = {〈n, i〉 | Mn halts on input i}

K = {n | Mn halts on input n}

21

Undecidability proofs: Example

Theorem. H0 = {n | Mn halts for input 0} is undecidable.

Proof: We show that K can be reduced to H0, i.e. that there exists a TM

computable function f : N → N such that i ∈ K iff f (i) ∈ H0.

Want: f (i) = j iff (Mi halts for input i iff Mj halts for input 0).

For every i there exists a TM Ai s.t.: s, ## ⊢∗

Ai
h, #|i#.

Let MK be the TM which accepts K .

We define f (i) := j where j is the Gödel number of Mj = AiMK .

f is clearly TM computable. We show that f has the desired property:

f (i) = j ∈ H0 iff Mj = AiMK halts for input 0 (##)

iff MK halts for input i iff i ∈ K .

22

The theorem of Rice

Preliminaries:

Let Mn be the TM with Gödel number n.

If Mn accepts a language L ∈ L0Σ then n is an index of L.

A language L ∈ L0Σ has infinitely many indices (it is accepted by infinitely

many TMs).

23

The theorem of Rice

Preliminaries:

Let Mn be the TM with Gödel number n.

If Mn accepts a language L ∈ L0Σ then n is an index of L.

A language L ∈ L0Σ has infinitely many indices (it is accepted by infinitely

many TMs).

Index set

Let P be a property of languages of type 0, P ⊆ L0Σ

I (P) = {n | Mn accepts an L ∈ P} is the index set of P.

24

The theorem of Rice

Informally:

For every non-trivial property P of languages of type 0,

it is undecidable whether the language accepted by a TM has property P.

Every non-trivial property of TMs is undecidable.

25

The theorem of Rice

Informally:

For every non-trivial property P of languages of type 0,

it is undecidable whether the language accepted by a TM has property P.

Every non-trivial property of TMs is undecidable.

Non-trivial property: Every property P s.t. there is a language of type 0

with property P and not all languages of type 0 have property P.

Note: P is a property of languages, not of Turing machines.

26

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

27

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Proof.

Idea: We reduce H0 (resp. the complement of H0) to I (P)

depending on whether ∅ ∈ P or not.

28

The theorem of Rice

Proof: Case 1: ∅ ∈ P. We reduce the complement of H0 to I (P).

We need to construct a TM computable function f such that

i 6∈ H0 iff f (i) = j ∈ I (P)

29

The theorem of Rice

Proof: Case 1: ∅ ∈ P. We reduce the complement of H0 to I (P).

We need to construct a TM computable function f such that

i 6∈ H0 iff f (i) = j ∈ I (P)

For every i , f (i) = j is constructed as follows:

• Let L be an arbitrary language in L0Σ\P and ML be a TM which accepts L.

• Let Mj = M
(2)
i

M
(1)
L

a 2-tape TM (with Gödel number j) which works as follows:

– Mj is started with input #|k# on tape 1 and ## on tape 2.

– Mj works first on tape 2 as Mi (for input 0).

If Mi halts, Mj then works on tape 1 as ML.

Therefore,Mj accepts the language: Lj =

{

∅ if Mi does not halt on input 0

L if Mi halts on input 0.

30

The theorem of Rice

Proof: Case 1: ∅ ∈ P. We reduce the complement of H0 to I (P).

We need to construct a TM computable function f such that

i 6∈ H0 iff f (i) = j ∈ I (P)

For every i , f (i) = j is constructed as follows:

• Let L be an arbitrary language in L0Σ\P and ML be a TM which accepts L.

• Let Mj = M
(2)
i

M
(1)
L

a 2-tape TM (with Gödel number j) which works as follows:

– Mj is started with input #|k# on tape 1 and ## on tape 2.

– Mj works first on tape 2 as Mi (for input 0).

If Mi halts, Mj then works on tape 1 as ML.

Therefore,Mj accepts the language: Lj =

{

∅ if Mi does not halt on input 0

L if Mi halts on input 0.

We know that ∅ ∈ P and L 6∈ P. Therefore:

f (i) = j∈I (P) iff L(Mj)∈P iff Lj=∅ iff Mi does not halt on 0 iff i 6∈H0

Thus, we have reduced the complement of H0 to I (P).

31

The theorem of Rice

Proof: Case 2: ∅ 6∈ P. We reduce H0 to I (P).

We need to construct a TM computable function f such that

i ∈ H0 iff f (i) = j ∈ I (P)

For every i , f (i) = j is constructed as follows:

• P 6= ∅, so there exists a language L ∈ P, and a TM ML which accepts L.

• Let Mj = M
(2)
i

M
(1)
L

a 2-tape TM (with Gödel number j) which works as follows:

– Mj is started with input #|k# on tape 1 and ## on tape 2.

– Mj works first on tape 2 as Mi (for input 0).

If Mi halts, Mj then works on tape 1 as ML.

Therefore,Mj accepts the language: Lj =

{

∅ if Mi does not halt on input 0

L if Mi halts on input 0.

Since ∅ 6∈ P and L ∈ P, we have:

f (i) = j ∈ I (P) iff Lj ∈ P iff Lj = L iff Mi halts on 0 iff i ∈ H0

Thus, we have reduced H0 to I (P).

32

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

Proof: Take P = {∅}. The empty language is TM acceptable, i.e. P ⊆ L0Σ.

P is non-trivial. Thus. I (P) is undecidable.

33

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

2. Let L ∈ L0,Σ. Then {n | L(Mn) = L} is undecidable.

34

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

2. Let L ∈ L0,Σ. Then {n | L(Mn) = L} is undecidable.

Proof: Take P = {L}.

35

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

2. Let L ∈ L0,Σ. Then {n | L(Mn) = L} is undecidable.

3. {n | L(Mn) is regular } is undecidable.

36

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

2. Let L ∈ L0,Σ. Then {n | L(Mn) = L} is undecidable.

3. {n | L(Mn) is regular } is undecidable.

Proof: take P to be the set of all regular languages.

37

The theorem of Rice

Theorem (Henry Gordon Rice, 1953)

Let P be such that ∅ 6= P (L0,Σ.

Let M0,M1, . . . ,Mn, . . . be the enumeration of all Turing Machines.

Then I (P) = {n | Mn accepts a language L ∈ P} is undecidable.

Consequences:

1. The emptiness problem E = {n | Mn halts for no input } is undecidable.

2. Let L ∈ L0,Σ. Then {n | L(Mn) = L} is undecidable.

3. {n | L(Mn) is regular } is undecidable.

4. {n | L(Mn) is context sensitive } is undecidable.

38

Decidability and Undecidability results

Logic

• The set of theorems in first-order logic is undecidable

Formal languages

• The Post Correspondence Problem and its consequences

39

Decidability and Undecidability results

Logic

1. The set of theorems in propositional logic

40

Decidability and Undecidability results

Logic

1. The set of theorems in propositional logic is decidable

Idea of the proof: There are sound, complete and terminating

algorithms for checking validity of formulae in propositional logic

(truth tables, resolution, tableaux, DPLL, ...)

41

Decidability and Undecidability results

Logic

1. The set of theorems in propositional logic is decidable

2. The set of theorems in first-order logic

42

Decidability and Undecidability results

Logic

1. The set of theorems in propositional logic is decidable

2. The set of theorems in first-order logic is recursively enumerable, but

undecidable

Idea of proof:

• For each signature Σ, the set of valid Σ-formulas is recursively

enumerable:

Resolution is a complete deduction system.

• For most signatures Σ, validity is undecidable for Σ-formulas:

One can easily encode Turing machines in most signatures

43

Decidability and Undecidability results

Theorem. It is undecidable whether a first order logic formula is valid.

Proof. Suppose there is an algorithm P that, given a first order logic and a

formula in that logic, decides whether that formula is valid.

We use P to give a decision algorithm for the language

{〈G(M),w〉 |G(M) is the Gödel number of a TM M that accepts the string w}.

As the latter problem is undecidable this will show that P cannot exist.

Given M and w , we create a FOL signature by declaring

• a constant ǫ,

• a unary function symbol a for every letter a in the alphabet, and

• a binary predicate q for every state q of M.

44

Decidability and Undecidability results

Proof (ctd.)

Consider the following interpretation of this logic:

• Variables x range over strings over the given alphabet,

• ǫ denotes the empty string,

• a(w) denotes the string aw , and

• q(x , y) indicates that M, when given input w , can reach a configuration

with state q, in which xy is on the tape, with x in reverse order, and

the head of M points at the first position of y .

Under this interpretation s(ǫ,w) is certainly a true formula, as the initial

configuration is surely reachable (where w is a representation of w made

from the constant and function symbols of the logic).

Furthermore the formula

E

x

E

y : h(x , y) holds iff M accepts w .

45

Decidability and Undecidability results

Proof (ctd.) Whenever M has a transition from state q to state r , reading

a, writing b the formula:

A

x

A

y : q(x , ay) → r(x , by)

holds.

Whenever M has a transition from state q to state r , moving right, the

formula:

A

x

A

y : q(x , ay) → r(ax , y)

holds.

46

Decidability and Undecidability results

Proof (ctd.) Likewise, if M has a transition from state q to state r , moving

left, the formulas

A

x

A

y : q(cx , ay) → r(x , cay)

hold for every choice of a letter c. In addition we have

A

x

A

y : q(ǫ, ay) → q(ǫ, ay),

covering the case that M cannot move left, because its head is already in

the left-most position.

47

Decidability and Undecidability results

Proof (ctd.)

Finally, there are variants of the formulas above for the case that a is the

blank symbol and that square of the tape is visited for the first time:

A

x

A

y : q(x , ǫ) → r(x , b) q, x# ⊢ r , xb

A

x

A

y : q(x , ǫ) → r(#x , ǫ) q, x# ⊢ r , x##
A

x

A

y : q(cx , ǫ) → r(x , c) q, xc# ⊢ r , xc

A

x

A

y : q(ǫ, ǫ) → q(ǫ, ǫ). q, # ⊢ q,#

Let T be the conjunction of all implication formulas mentioned above. As

M has finitely many transitions and the alphabet is finite, this conjunction

is finite as well, and thus a formula of first order logic.

48

Decidability and Undecidability results

Proof (ctd.) Now consider the formula

s(ǫ,w) ∧ T →

E

x

E

y : h(x , y).

In case M accepts w , there is a valid computation leading to an accept

state. Each step therein corresponds with a substitution instance of one of

the conjuncts in T , and using the laws of first order logic it is easy to check

that the formula above is provable and thus true under all interpretations.

If, on the other hand, the formula above is true under all interpretations,

it is surely true in the given interpretation, which implies that M has an

accepting computation starting on w .

Thus, in order to decide whether or not M accepts w , it suffices to check

whether or not the formula above is a theorem of first order logic.

49

Decidability and Undecidability results

Logic

• The set of theorems in first-order logic is undecidable

Formal languages next time

• The Post Correspondence Problem and its consequences

50

