
Advanced Topics in Theoretical Computer Science

Part 1: Turing Machines and Turing Computability

31.10.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Turing Machines

Overview: Turing Machines

• Accept languages of type 0.

• First memory: state (finite)

• Second memory: tape

unlimited size; access at arbitrary place.

• Have a read/write head which can move left/right over the tape.

• Input word: initially on the tape.

The machine can read it arbitrarily often.

2

Turing Machines

Definition (Deterministic Turing Machine (DTM))

A deterministic Turing Machine (DTM) M is a tuple

M = (K , Σ, δ, s)

where:

• K is a finite set of states with h 6∈ K ;

(h is the halting state)

• Σ is an alphabet with L,R 6∈ Σ,# ∈ Σ

• δ : K × Σ → (K ∪ {h})× (Σ ∪ {L,R}) is a transition function

• s ∈ K is an initial state

Number of states: |K | − 1 (initial state is not counted)

3

Turing Machines

Attention: Various definitions for Turing machines in the literature.

Some definitions do not require δ to be a total function

Same expressive power (but a different definition for “hanging”)

4

Turing Machines

Attention: Various definitions for Turing machines in the literature.

Some definitions do not require δ to be a total function

Same expressive power (but a different definition for “hanging”)

Here: We require δ to be totally defined.

5

Turing Machine

Example:

state # 1 c

q0 (q1, c) − −

q1 (q2,R) (q1, L) (q1, L)

q2 − (q3, #) (q7, #)

q3 (q4,R) − −

q4 (q5, 1) (q4,R) (q4,R)

q5 (q6, 1) (q5, L) (q5, L)

q6 − (q2,R) −

q7 (q8,R) − −

q8 (h, #) (q8,R) −

Positions marked with −:

values which are never used

during the execution.

Definition of TM in which δ is partially defined:

− means “undefined”

Definition of TM im which δ is totally defined:

− can e.g. mean δ(x) = x for that input

(loop)

6

Turing Machines

How does a Turing Machine work?

Transition δ(q, a) = (q′, x) means:

Depending on the:

• current state q ∈ K

• symbol a ∈ Σ on which the read/write head is positioned

the following happens:

• a step to the left (if x = L)

• a step to the right (if x = R)

• the symbol a which currently stands below the read/write head is

overwritten with symbol b ∈ Σ (if x = b ∈ Σ)

• the state is changed to q′ ∈ K ∪ {h}.

7

Turing Machine

The tape

The tape of a DTM is unlimited on one side:

• infinitely long to the right

• has an end on the left

• when a DTM tries to go beyond the left end, it remains “hanging”.

In this case the computation does not halt.

8

Turing Machines

Configuration

• A configuration describes the complete current situation of a machine

in a computation.

• A computation is a sequence of configurations,

where there is always a transition from a configuration to the next

configuration.

The configuration s, #wau# of a DTM consists of 4 elements:

• current state s

• word w at the left of the read/write head

• the symbol a on which the head is placed

• the word u at the right of the actual head position

Remark: The tape has only finitely many symbols which are not blanks

9

Turing Machine

Initial configuration

• to the left of the tape: blank

• directly right of this blank: input word

• If a DTM receives several words w1, . . . ,wn after each other, they are

separated by blanks:

#w1#w2 . . .#wn#

• To the right of the last input word there are only blanks

• the read/write head of the DTM is positioned on the blank directly to

the right after the last input word

#w1#w2 . . .#wn#

• The machine is in the initial state s

10

Turing Machines

Empty symbol: The special symbol # (blank) is the empty symbol.

This symbol is never part of the input word; it can for instance be used to

separate words on the tape.

11

Turing Machines

Definition (Input)

A word w is called an input forM, ifM starts with the start configuration

C0 = s, #w#

(w1, . . . ,wn) is an input for M, if M starts with the start configuration

C0 = s, #w#w2# . . .#wn#

12

Turing Machines

Definition (Transition from a configuration to another configuration)

Let C = q,wau be a configuration.

• If δ(q, a) = (q′, b), we have a transition C ⊢M C ′ where

C ′ = q′,wbu

• If δ(q, a) = (q′, L) and w 6= ǫ, we have a transition C ⊢M C ′ where

C ′ is like C , but the head is moved with one position to the left.

• If δ(q, a) = (q′,R), we have a transition C ⊢M C ′ where C ′ is like

C , but the head is moved with one position to the right.

Remark: If C = q,wau, with w = ǫ and δ(q, a) = (q′, L)

there can be no transition to another configuration.

13

Turing Machines

Definition (To halt, to hang)

Let M be a Turing machine.

• M halts in C = q,wau iff q = h

• M hangs in C = q,wau iff there is no next configuration

(especially when w = ǫ and
E
q′ δ(q, a) = (q′, L)).

Remark: For the definition of TM in which δ is partially defined, M hangs

in C = q,wau also if δ(q, a) is undefined.

14

Turing Machine

Definition (Computation)

Let M be a Turing machine. We write

C ⊢∗
M C ′

iff there exists a sequence of configurations

C0,C1, . . . ,Cn (n ≥ 0)

such that:

• C = C0 and C ′ = Cn

• for all i < n, Ci ⊢M Ci+1

Then C0C1 . . .Cn is a computation of length n from C0 to Cn.

15

Constructing Turing Machines

Assume we can construct “simple” Turing machines, which perform simple

computations

Goal: Design TM for a complex computation task

A possible approach:

• Describe steps which would lead to the desired computation

• Turing Machines for individual steps

• Consecutive steps are combined using “compositions” of Turing

machines

M1 → M2 is a Turing machine which first works as M1 and then, if M1

halts, continues working as M2.

16

Diagram Representation of Turing Machine

• Initial step is represented with an arrow head “>”.

• M1 → M2: works first as M1; if M1 halts it continues working as M2.

• M1
a
→ M2: works first as M1; if M1 halts and the actual letter on the

tape is a it continues working as M2.

Example:

> L
σ

→ RσR, σ ∈ {|,#}

First step to the left. If σ read: step to the right, write σ, step to the right.

> L
σ 6=#
−→ RσR,

First step to the left. If σ read and σ 6= # step to the right, write σ, step

to the right.

R# : >

σ 6=#
x

R L# : >

σ 6=#
x

L

17

Turing Machine

Example: Steps necessary for constructing a DTM which receives as

an input a string over {1} and copies it, i.e.

If at the beginning there are n ones on the tape, then at the end

there are 2n ones on the tape (separated by a blank #).

(1) Go to the beginning of the word.

(2) Go right.

(3) Read symbol. If symbol is 1 replace it with # and go right until reading a # (initial

word ends); then right until reading a # (end of the copied sequence)

(4) Write 1 on tape, then move left until reading a # (space between word and copy);

then left until reading a # (symbol which was replaced with # in (3))

(5) Write back 1 at that place and goto step (2).

(6) If in (3) # is read copying is finished; go right until reading a #.

18

Turing Machine

Example: Steps necessary for constructing a DTM which receives as

an input a string over {1} and copies it, i.e.

If at the beginning there are n ones on the tape, then at the end

there are 2n ones on the tape (separated by a blank #).

(1) Go to the beginning of the word.

(2) Go right.

(3) Read symbol. If symbol is 1 replace it with # and go right until reading a # (initial

word ends); then right until reading a # (end of the copied sequence)

(4) Write 1 on tape, then move left until reading a # (space between word and copy);

then left until reading a # (symbol which was replaced with # in (3))

(5) Write back 1 at that place and goto step (2).

(6) If in (3) # is read copying is finished; go right until reading a #.

−−−−−−−−−−−−−−−−−−
↓ |

> L#R
σ 6=#
−→ #R#R#σL#L#σ

↓#

R#

19

Turing Machines can compute functions

Definition (TM-computable function)

Let Σ0 be an alphabet with # 6∈ Σ0.

A partial function

f : (Σ∗
0)

m → (Σ∗
0)

n

is DTM-computable if there exists a deterministic Turing machine

M = (K , Σ, δ, s)

• with Σ0 ⊆ Σ

• such that for all w1, . . . ,wm, u1, . . . , un ∈ Σ∗
0 the following hold:

(1) f (w1, . . . ,wm) = (u1, . . . , un) iff

s, #w1# . . .#wm# ⊢∗
M h, #u1# . . .#un

(2) f (w1, . . . ,wm) is undefined iff

M started with s, #w1# . . .#wm# does not halt

(i.e. it runs forever or it hangs).

20

Turing Machines can compute functions

Attention

We consider Turing Machines in a different way from the way automata are

considered:

• For finite automata and push-down automata: one studies which

languages they accept.

• For Turing Machines we study

– which languages they accept and

– which functions they compute

Acceptance of a language is a special case of function computation.

21

Turing Machine: Accepted language

Definition

• A word w is accepted by a DTM M if M halts on input w

(such that at the end, the head is positioned on the first blank on

the right of w)

• A language L ⊆ Σ∗ is accepted by a DTM M iff the words from L

(and no other words) are accepted by M.

Attention:

For words which are not accepted, the DTM does not need to halt

(it is not allowed to halt, in fact)

22

Turing Machines: Functions on natural numbers

Functions on natural numbers

• We use the unary representation: a number is represented on the tape

as a string of n vertical lines.

• A Turing Machine computes a function

f : Nk → N
n

in unary representation as follows:

(1) if f (i1, . . . , ik) = (j1, . . . , jn), then M computes

s, #|i1#|i2# . . .#|ik# ⊢∗
M h,#|j1#|j2# . . .#|jn#.

(2) if f (i1, . . . , ik) is undefined then M halts not on input

s, #|i1#|i2# . . .#|ik#.

23

Turing Machines: Functions on natural numbers

Definition

• TMpart is the set of all partial TM-computable functions f : Nk → N

• TM is the set of all total TM-computable functions f : Nk → N

24

Turing Machines: Functions on natural numbers

Definition

• TMpart is the set of all partial TM-computable functions f : Nk → N

• TM is the set of all total TM-computable functions f : Nk → N

Remark: Restrictions when defining TM and TMpart:

• Only functions over N

• Only functions with values in N (not in Nm)

25

Turing Machines: Functions on natural numbers

Definition

• TMpart is the set of all partial TM-computable functions f : Nk → N

• TM is the set of all total TM-computable functions f : Nk → N

Remark: Restrictions when defining TM and TMpart:

• Only functions over N

• Only functions with values in N (not in Nm)

This is not a real restriction:

Words from other domains can be encoded as natural numbers.

26

Other types of Turing machines

Standard deterministic Turing Machines (Standard DTM)

The Turing machines defined before

• are deterministic

• have a tape which is infinite on one side.

We will call such machines Standard Turing Machines

(Standard DTM, or DTM for short)

27

Other types of Turing machines

Standard deterministic Turing Machines (Standard DTM)

The Turing machines defined before

• are deterministic

• have a tape which is infinite on one side.

We will call such machines Standard Turing Machines

(Standard DTM, or DTM for short)

Other types of Turing machines:

• Tape infinite on both sides

• Several tapes

• Non-deterministic Turing machines

28

Turing machines with both sides infinite tape

• The definition of a machine remains the same

• The definition of a configuration changes:

Configurations: q,wau, but:

– w consists of all symbols until the last non-blank symbol on the

left of reading head

– u consists of all symbols until the last non-blank symbol on the

right of reading head

w = ǫ: only blanks on the left of the read/write head

u = ǫ: only blanks on the right of the read/write head

• Computations defined as for TM’s (taking into account the different

definition for configuration)

29

Turing machines with both sides infinite tape

Theorem

For every TM with both sides infinite tape which computes a function

f or accepts a language L, there exists a standard DTM M′ which also

computes f (resp. accepts L).

30

Turing machines with several tapes

Definition (DTM with k (half-)tapes; k-Turing machine; k-DTM)

A Turing Machine M = (K , Σ1, . . . , Σk , δ, s) with k (half-)tapes (each

with a read/write head) is a Turing Machine with a transition function:

δ : K ×Σ1 × · · ·×Σk → (K ∪{h}) × (Σ1 ∪{R, L}) × · · ·× (Σk ∪{R, L})

A configuration of a k-Turing machine has the form:

C = q, w1a1u1, w2a2u2, . . . , wkakuk

• The heads can move independently (otherwise we would only have a

DTM with k tracks)

• Definition of computation: analogous to that for Standard-DTM

• For a k-DTM which computes a function f : Σm
0 → Σn

0 we make the

convention that input/output takes place on the first tape.

31

Turing machines with several tapes

Theorem

For every k-DTM which computes a function f (or accepts a language

L) there exists a DTM M′ which computes f (resp. accepts L).

32

Non-deterministic Turing machines

Definition

A non-deterministic Turing machine M is a tuple:

M = (K , Σ,∆, s)

where:

• K , Σ and s are as for deterministic Turing machines.

• ∆ is a transition relation:

∆ ⊆ (K × Σ)× ((K ∪ {h})× (Σ ∪ {L,R}))

33

Non-deterministic Turing machines

Configurations: defined as for DTMs.

For non-deterministic Turing machines it is possible that there are several

ways of evolving from a given configuration.

34

Non-deterministic Turing machines

Definitions

Let M be a non-deterministic Turing machine.

• M halts on input w if among all possible computations which M

can choose, there exists at least one for which M reaches a halting

configuration.

• M hangs in a configuration C if there is no configuration into which

M can move from C according to ∆.

• M accepts a word w iff M can reach from s, #w# a halting state.

• M accepts a language L iff the words from L (and no other words)

are accepted by M.

35

Non-deterministic Turing machines

DTM were also used to compute functions

Can NTMs be also used for computing functions?

36

Non-deterministic Turing machines

DTM were also used to compute functions

Can NTMs be also used for computing functions?

Problem. For computing a function it is not only important that the Turing

machine halts, but also with which contents on the tape:

Which of the many halting configurations should hold?

37

Non-deterministic Turing machines

DTM were also used to compute functions

Can NTMs be also used for computing functions?

Problem. For computing a function it is not only important that the Turing

machine halts, but also with which contents on the tape:

Which of the many halting configurations should hold?

To avoid this problem, we do not extend the notions of “decide” and

“enumerate” to NTM.

In general, NTMs will not be used to compute functions.

38

Non-deterministic Turing machines

How does a non-deterministic Turing machine compute?

• The rules of a DTM can be seen as a “program”

(consisting of very simple steps).

• This is different for NTMs

• A NTM is not a machine which guesses always right.

39

Non-deterministic Turing machines

How does a non-deterministic Turing machine compute?

• The rules of a DTM can be seen as a “program”

(consisting of very simple steps).

• This is different for NTMs

• A NTM is not a machine which guesses always right.

Correct intuition

• Transitions from configurations to successor configurations correspond

to the set ∆ of transition rules

• In addition: Search

Alternative formulation: A NTM considers all alternatives in parallel.

An NTM accepts a word if there is at least one computation which ends

in a halting configuration. [This is sometimes expressed as “the NTM

guesses” – (but care is needed with this terminology!)]

40

Non-deterministic Turing Machines

Example:

Let L = {|n | n not prime and n ≥ 2}

An NTM can accept this language as follows:

• “Guess” a number and write it (left) on the tape.

• “Guess” a second number and write it.

• Multiply the two numbers.

• Compare the result with the input.

• Stop iff the result is equal to the input (in halting state).

41

Non-deterministic Turing Machines

Example:

Let L = {|n | n not prime and n ≥ 2}

An NTM can accept this language as follows:

• “Guess” a number and write it on the tape.

(consider all possible numbers smaller than n in parallel)

• “Guess” a second number and write it.

(consider all possible numbers smaller than n in parallel)

• Multiply the two numbers.

• Compare the result with the input.

• Stop iff the result is equal to the input (in halting state).

42

Non-deterministic Turing machines

Theorem

Every language which is accepted by some non-deterministic Turing

machine is also accepted by a standard deterministic Turing machine.

43

Universal Turing machines

Comparison between Turing machines and “normal” computer

Turing machines are very powerful.

44

Universal Turing machines

Comparison between Turing machines and “normal” computer

Turing machines are very powerful.

How powerful?

• A Turing machine has a given “program” (set of rules, δ)

• “Normal” computer can execute arbitrary programs.

45

Universal Turing machines

Comparison between Turing machines and “normal” computer

Turing machines are very powerful.

How powerful?

• A Turing machine has a given “program” (set of rules, δ)

• “Normal” computer can execute arbitrary programs.

Actually, this is possible also with Turing machines

46

Universal Turing Machines

Turing machine which simulates other Turing machines

• Universal Turing machine U receives as input

(i) the rules of an arbitrary TM M and

(ii) a word w .

• U simulates M, by always changing the configurations (according to

the transition function δ) the way M would change them.

47

Universal Turing Machines

Turing machine which simulates other Turing machines

• Universal Turing machine U receives as input

(i) the rules of an arbitrary TM M and

(ii) a word w .

• U simulates M, by always changing the configurations (according to

the transition function δ) the way M would change them.

Problem: Turing machines take words (or numbers) as inputs.

Question:

Can we encode an arbitrary Turing machine as a number or as a word?

48

Universal Turing Machines

Gödelisation

Method for assigning with every Turing machine a number or a word

(Gödel number or Gödel word) such that the Turing machine can be

effectively reconstructed from that number (or word).

49

Universal Turing Machines

Gödelisation

Method for assigning with every Turing machine a number or a word

(Gödel number or Gödel word) such that the Turing machine can be

effectively reconstructed from that number (or word).

We can construct a universal Turing machine.

50

Acceptance and Decidability

We now formalize notions such as:

• Acceptable language

• Recursively enumerable language

• Enumerable language

• Decidable language

and present the relationships between these notions.

51

Acceptance and Decidability

Acceptance

A DTM M accepts a language L if

• for every input word w ∈ L, M halts;

• for every input word w 6∈ L, M computes infinitely or hangs.

52

Acceptance and Decidability

Acceptance

A DTM M accepts a language L if

• for every input word w ∈ L, M halts;

• for every input word w 6∈ L, M computes infinitely or hangs.

Deciding

A DTM M decides a language L if

• for every input word w ∈ L, M halts with band contents Y (yes)

• for every input word w 6∈ L, M halts with band contents N (no)

53

Acceptance and Decidability

Definition (Decidable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M decides L if for all w ∈ Σ∗
0 :

s, #w# ⊢∗
M







h, #Y# if w ∈ L

h, #N# if w 6∈ L

• L is called decidable if there exists a DTM which decides L.

54

Acceptance and Decidability

Definition (Acceptable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M accepts a word w ∈ Σ∗
0 if M always halts on input w .

• M accepts the language L if for all w ∈ Σ∗
0 , M accepts w iff w ∈ L.

• L is called acceptable (or semi-decidable) if there exists a DTM

which accepts L.

55

Recursively enumerable

Definition (Recursively enumerable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M enumerates L if there exists a state qB ∈ K (the blink state)

such that:

L = {w ∈ Σ∗
0 |

E

u ∈ Σ∗; s, # ⊢∗
M qB , #w#u}

• L is called recursively enumerable if there exists a DTM M which

enumerates L.

56

Recursively enumerable

Attention: recursively enumerable 6= enumerable!

57

Recursively enumerable

Attention: recursively enumerable 6= enumerable!

Difference:

• L enumerable: there exists a surjective map of the natural numbers

onto L.

• L recursively enumerable: the surjective map can be computed by a

Turing machine.

Because of the finiteness of the words and of the alphabet, all languages

are enumerable. But not all languages are recursively enumerable.

58

Recursively enumerable

Attention: recursively enumerable 6= enumerable!

Difference:

• L enumerable: there exists a surjective map of the natural numbers

onto L.

• L recursively enumerable: the surjective map can be computed by a

Turing machine.

Because of the finiteness of the words and of the alphabet, all languages

are enumerable. But not all languages are recursively enumerable.

7→ Set of all languages is not enumerable;

Turing machines can be enumerated.

59

Recursively enumerable

Attention: recursively enumerable 6= decidable!

60

Recursively enumerable

Attention: recursively enumerable 6= decidable!

Examples:

The following sets are recursively enumerable, but not decidable:

• The set of the Gödelisations of all halting Turing machines.

• The set of all terminating programs.

• The set of all valid formulae in predicate logic.

61

