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Last time

e Deterministic Turing Machine (DTM)

e Configuration, transition between configurations, computation
To halt, to hang

e Representation of Turing machines
- as in definition
- diagram (flow-chart) representation



Last time

e Definitions: TM-computable function

( Y

e TMPat s the set of all partial TM-computable functions f : N — N

e TM is the set of all total TM-computable functions f : Nk — N

e v

Remark: Restrictions when defining TM and TMPart:

e Only functions over N

e Only functions with values in N (not in N)

This i1s not a real restriction:

Words from other domains can be encoded as natural numbers.



Last time

Types of Turing machines:

— Standard deterministic Turing Machines (Standard DTM)
— Other types of Turing machines:
e Tape infinite on both sides

e Several tapes

e Non-deterministic Turing machines

_
e For every TM with both sides infinite tape which computes a function

f or accepts a language L, there exists a standard DTM M’ which also
computes f (resp. accepts L).

e For every k-DTM which computes a function f (or accepts a language L)
there exists a DTM M’ which computes f (resp. accepts L).




Last time

Universal Turing machines: TM which simulates other Turing machines

e Universal Turing machine U receives as input
(i) the rules of an arbitrary TM M and
(ii) a word w.

e U/ simulates M, by always changing the configurations (according to
the transition function ) the way M would change them.

Problem: Turing machines take words (or numbers) as inputs. Can we
encode an arbitraty Turing machine as a number or as a word?

Solution: Godelisation

Method for assigning with every Turing machine a number or a word (Gé&del
number or Gédel word) such that the Turing machine can be effectively
reconstructed from that number (or word).
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e Acceptable language

e Recursively enumerable language
e Enumerable language

e Decidable language

relationships between these notions.



Last time

A DTM M decides a language L if
e for every input word w € L, M halts with band contents Y (yes)

e for every input word w ¢ L, M halts with band contents N (no)
L is called decidable if there exists a DTM which decides L.

Let L be a language over 2 g with #, Y, N &€ X,.
Let M = (K,%X,6,s) bea DTM with ¥y C ¥.

e M enumerates L if there exists a state qg € K (the blink state)
such that: L ={w € X3 |Ju € *; s, # F5 as, #Wﬁu}

e L is called recursively enumerable if there exists a DTM M which
enumerates L.




Acceptable/Recursively enumerable/Decidable

Theorem (Acceptable = Recursively enumerable)

A language is recursively enumerable iff it is acceptable.

Proposition

Every decidable language is acceptable.

Proposition

The complement of any decidable language is decidable.

Proposition (Characterisation of decidability)
A language L is decidable iff L and its complement are acceptable.




Recursively enumerable = Type 0

Formal languages are of type O if they can be generated by arbitrary

grammars (no restrictions).

s

Proposition

The recursively enumerable languages (i.e. the languages acceptable by
DTMs) are exactly the languages generated by arbitrary grammars (i.e.
languages of type 0).




Undecidability of the halting problem

M Turing machine — G(M) Godelisation

HALT = {(G(M), w) | M halts on input w}

Is HALT decidable?
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Undecidability of the halting problem

Proposition:
HALT = {(G(M), w) | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM
My which halts on every input and accepts only inputs in HALT.

We construct the following TM:

(M loops
X XFEX — >
p-| Copy [ M H accept Loop
: >
reject

. Let x be the input.

. Copy the input. Let x#x be the result.
. Decide using My if (x, x) € HALT

If yes: loop

If no: halt

_U'I_-hool\)l—l
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Undecidability of the halting problem

Proposition:

HALT = {(G(M), w) | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM

My which halts on every input and accepts only inputs in HALT.

What happens when we start M with input G(M)?

M

» | Copy

XH£EX

—>

My

loops
— >
accept
Loop
. >
reject

Case 1: M started with G(M) halts: Then (G(M), G(M)) & HALT

Contradiction!

Case 2: M started with G(M) does not halt: Then (G(M), G(M))eHALT Contradiction!
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Undecidability proofs: Example

Theorem. K = {G(M) | M halts for input G(M)}
Is acceptable but undecidable.

Proof: Undecidable: Similar to the undecidability proof for HALT .
Acceptable: My := Mprepld,
(U universal TM;  Mpep brings tape in form required by U).
Reformulation using numbers instead of words:
Godelization — Godel numbers
Let My, My, ..., M,,... be an enumeration of all Turing Machines
M, is the TM with Godel humber n.

K = {n | M, halts on input n}
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Today

e How to prove that a language is undecidable?
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Undecidability proofs

Proof via reduction
e L1, L, languages
e [ known to be undecidable

e [o show: L> undecidable

e |dea: Assume L, decidable. Let M> be a TM which decides L,. Show
that then we can construct a TM which decides L;.

For this, we have to find a computable function f which transforms an
instance of L1 into an instance of L»

Vw(w € Ly iff f(w) € Lp)

Let Mr be the TM which computes f. Construct My = MfM>. Then
M; decides L;.
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Undecidability proofs

Proof via reduction

Definition. L1, Ly languages. L1 < Ly (L1 is reducible to Lp) if there exists
a computable function f such that:

Vw(w € Ly iff f(w) € Lp)

Theorem. If L1 < Ly and L; is undecidable then L> is undecidable.
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Undecidability proofs: Example

Theorem. Hy = {n | M, halts for input 0} is undecidable.

Proof: We show that K can be reduced to Hp, i.e. that there exists a TM

computable function f : N — N such that
ie K iff f(i) € Hp.

Only main idea here, we will come back to this example later

17



Undecidability proofs: Example

Theorem. Hy = {n | M, halts for input 0} is undecidable.

Proof: We show that K can be reduced to Hp, i.e. that there exists a TM
computable function f : N — N such that € K iff (i) € Hp.

Want: f(i) =j iff (M; halts for input i iff M; halts for input 0).

For every i there exists a TM A; s.t.: s, ## =, h, #|"£.
Let Mk be the TM which accepts K.

We define f(i) := j where j is the Gédel number of M; = A; M.
f is TM computable. We show that f has the desired property:
f(i)=Jj€ Hy iff M;=A;Mg halts for input 0 (##)
iff My halts for input i iff 7€ K.
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