Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (2)

28.11.2018

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Exams

Foodle (e-mail sent today)
please indicate which slots are possible for you until
Tuesday, 4.12.2018 at 10:00

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions

$$
\mapsto \mathcal{P}
$$

- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Recursive functions: Atomic functions

The following functions are primitive recursive and μ-recursive:
The constant null

$$
0: \mathbb{N}^{0} \rightarrow \mathbb{N} \text { with } 0()=0
$$

Successor function

$$
+1: \mathbb{N}^{1} \rightarrow \mathbb{N} \text { with }+1(n)=n+1 \text { for all } n \in \mathbb{N}
$$

Projection function

$$
\pi_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N} \text { with } \pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
$$

Recursive functions

Notation:

We will write \mathbf{n} for the tuple $\left(n_{1}, \ldots, n_{k}\right), k \geq 0$.

Recursive functions: Composition

Composition:
If the functions: $\quad g: \mathbb{N}^{r} \rightarrow \mathbb{N}$

$$
r \geq 1
$$

$$
h_{1}: \mathbb{N}^{k} \rightarrow \mathbb{N}, \ldots, h_{r}: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad k \geq 0
$$

are primitive recursive resp. μ-recursive, then

$$
f: \mathbb{N}^{k} \rightarrow \mathbb{N}
$$

defined for every $\mathbf{n} \in \mathbb{N}^{k}$ by:

$$
f(\mathbf{n})=g\left(h_{1}(\mathbf{n}), \ldots, h_{r}(\mathbf{n})\right)
$$

is also primitive recursive resp. μ-recursive.

Notation without arguments: $f=g \circ\left(h_{1}, \ldots, h_{r}\right)$

Primitive recursive functions

Primitive recursion

If the functions

$$
\begin{aligned}
& g: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad(k \geq 0) \\
& h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}
\end{aligned}
$$

are primitive recursive, then the function

$$
\begin{aligned}
f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \text { with } \quad & f(\mathbf{n}, 0)=g(\mathbf{n}) \\
& f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))
\end{aligned}
$$

is also primitive recursive.

Primitive recursive functions

Primitive recursion

If the functions

$$
\begin{aligned}
& g: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad(k \geq 0) \\
& h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}
\end{aligned}
$$

are primitive recursive, then the function

$$
\begin{array}{ll}
f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \text { with } \quad & f(\mathbf{n}, 0)=g(\mathbf{n}) \\
& f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))
\end{array}
$$

is also primitive recursive.

Notation without arguments: $f=\mathcal{P} \mathcal{R}[g, h]$

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Notation: $\mathcal{P}=$ The set of all primitive recursive functions

Arithmetical functions: definitions

$f(n)=n+c, \quad$ for $c \in \mathbb{N}, c>0$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

$f(n)=n$

$$
f=\pi_{1}^{1}
$$

$f(n, m)=n+m$

$$
f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(+1) \circ \pi_{3}^{3}\right]
$$

$f(n)=n-1$

$$
f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right]
$$

$f(n, m)=n-m$

$$
f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(-1) \circ \pi_{3}^{3}\right]
$$

$f(n, m)=n * m$

$$
f=\mathcal{P} \mathcal{R}\left[0,+\circ\left(\pi_{3}^{3}, \pi_{1}^{3}\right)\right]
$$

Defining new primitive recursive functions

Re-ordering/Omitting/Repeating Arguments
Lemma The set of primitive recursive functions is closed under:

- Re-ordering
- Omitting
- Repeating
of arguments when composing functions.

Additional Arguments

Lemma. Assume $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is primitive recursive.
Then, for every $p \in \mathbb{N}$, the function $f^{\prime}: \mathbb{N}^{k} \times \mathbb{N}^{p} \rightarrow \mathbb{N}$ defined for every $\mathbf{n} \in \mathbb{N}^{k}$ and every $\mathbf{m} \in \mathbb{N}^{p}$ by:

$$
f^{\prime}(\mathbf{n}, \mathbf{m})=f(\mathbf{n})
$$

is primitive recursive.

Case distinction

Lemma (Case distinction is primitive recursive)
If $-g_{i}, h_{i}(1 \leq i \leq r)$ are primitive recursive functions, and

- for every n there exists a unique i with $h_{i}(n)=0$ then the function f defined by:

$$
f(n)= \begin{cases}g_{1}(n) & \text { if } h_{1}(n)=0 \\ \cdots & \\ g_{r}(n) & \text { if } h_{r}(n)=0\end{cases}
$$

is primitive recursive.

Case distinction

Lemma (Case distinction is primitive recursive)
If $\bullet g_{i}, h_{i}(1 \leq i \leq r)$ are primitive recursive functions, and

- for every n there exists a unique i with $h_{i}(n)=0$ then the function f defined by:

$$
f(n)= \begin{cases}g_{1}(n) & \text { if } h_{1}(n)=0 \\ \cdots & \\ g_{r}(n) & \text { if } h_{r}(n)=0\end{cases}
$$

is primitive recursive.

Proof: $f(n)=g_{1}(n) *\left(1-h_{1}(n)\right)+\cdots+g_{r}(n) *\left(1-h_{r}(n)\right)$

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Proof: f_{1} and f_{2} can be written using primitive recursion and case distinction:

$$
\begin{aligned}
& f_{1}(\mathbf{n}, 0)=0 \\
& f_{1}(\mathbf{n}, m+1)=f_{1}(\mathbf{n}, m)+g(\mathbf{n}, m)
\end{aligned}
$$

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Proof: f_{1} and f_{2} can be written using primitive recursion and case distinction:

$$
\begin{array}{l|l}
f_{1}(\mathbf{n}, 0)=0 & f_{2}(\mathbf{n}, 0)=1 \\
f_{1}(\mathbf{n}, m+1)=f_{1}(\mathbf{n}, m)+g(\mathbf{n}, m) & f_{2}(\mathbf{n}, m+1)=f_{2}(\mathbf{n}, m) * g(\mathbf{n}, m)
\end{array}
$$

Bounded μ operator

Definition.

Let $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ be a function.
The bounded μ operator is defined as follows:

$$
\mu_{i<m} i(g(\mathbf{n}, i)=0):= \begin{cases}i_{0} & \text { if } g\left(\mathbf{n}, i_{0}\right)=0 \\
& \begin{array}{l}
\text { and for all } j<i_{0} g(\mathbf{n}, j) \neq 0 \\
0
\end{array} \\
\text { if } g(\mathbf{n}, j) \neq 0 \text { for all } 0 \leq j<m \\
\text { or } m=0\end{cases}
$$

$\mu_{i<m} i(g(\mathbf{n}, i)=0)$ is the smallest $i<m$ such that $g(\mathbf{n}, i)=0$

Bounded μ operator

Theorem.
If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a primitive recursive function
then the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ defined by:

$$
f(\mathbf{n}, m)=\mu_{i<m} i(g(\mathbf{n}, i)=0)
$$

is also primitive recursive

Bounded μ operator

Theorem.

If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a primitive recursive function then the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ defined by:

$$
f(\mathbf{n}, m)=\mu_{i<m} i(g(\mathbf{n}, i)=0)
$$

is also primitive recursive
Proof: We can define f as follows:

$$
\begin{aligned}
f(\mathbf{n}, 0) & =0 \\
f(\mathbf{n}, m+1) & = \begin{cases}0 & \text { if } m=0 \\
m & \text { if } g(\mathbf{n}, m)=f(\mathbf{n}, m)=0 \wedge g(\mathbf{n}, 0) \neq 0 \wedge m>0 \\
f(\mathbf{n}, m) & \text { otherwise }\end{cases}
\end{aligned}
$$

Bounded μ operator

Theorem.

If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a primitive recursive function then the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ defined by:

$$
f(\mathbf{n}, m)=\mu_{i<m} i(g(\mathbf{n}, i)=0)
$$

is also primitive recursive
Proof: We can define f as follows:

$$
\begin{aligned}
f(\mathbf{n}, 0) & =0 \\
f(\mathbf{n}, m+1) & = \begin{cases}0 & \text { if } m=0 \\
m & \text { if } g(\mathbf{n}, m)=f(\mathbf{n}, m)=0 \wedge g(\mathbf{n}, 0) \neq 0 \wedge m>0 \\
f(\mathbf{n}, m) \text { otherwise }\end{cases}
\end{aligned}
$$

Bounded μ operator

Theorem.

If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a primitive recursive function then the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ defined by:

$$
f(\mathbf{n}, m)=\mu_{i<m} i(g(\mathbf{n}, i)=0)
$$

is also primitive recursive

Proof: We can define f as follows:

$$
\begin{aligned}
f(\mathbf{n}, 0) & =0 \\
f(\mathbf{n}, m+1) & = \begin{cases}0 & \text { if } m=0 \\
m & \text { if } g(\mathbf{n}, m)=f(\mathbf{n}, m)=0 \wedge g(\mathbf{n}, 0) \neq 0 \wedge m>0 \\
\text { i.e. if } g(\mathbf{n}, m)+f(\mathbf{n}, m)+(1-g(\mathbf{n}, 0))+(1-m)=0 \\
f(\mathbf{n}, m) \text { otherwise }\end{cases}
\end{aligned}
$$

Prime number functions

Theorem: The following functions are primitive recursive:
(1) The Boolean function $\mid: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\left\lvert\,(n, m)= \begin{cases}1 & \text { if } n \text { divides } m \\ 0 & \text { otherwise }\end{cases}\right.
$$

(2) The Boolean function prime $: \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\operatorname{prime}(n)= \begin{cases}1 & \text { if } n \text { prime } \\ 0 & \text { otherwise }\end{cases}
$$

(3) The function $p: \mathbb{N} \rightarrow \mathbb{N}$ defined by: $p(n)=p_{n}$, the n-th prime number.
(4) The function $D: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by: $D(n, i)=k$ iff k is the power of the i-th prime number in the prime number decomposition of n.

$$
D(n, i)=\max \left(\left\{j \mid n \bmod p(i)^{j}=0\right\}\right)
$$

Prime number functions

Proof:
(1) $\mid: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\left\lvert\,(n, m)= \begin{cases}1 & \text { if } n \text { divides } m \\ 0 & \text { otherwise }\end{cases}\right.
$$

Prime number functions

Proof:
(1) $\mid: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\left\lvert\,(n, m)= \begin{cases}1 & \text { if } n \text { divides } m \\ 0 & \text { otherwise }\end{cases}\right.
$$

$\mid(n, m)=1$ iff $\exists z(n * z=m)$ iff $\prod_{z \leq m}(n * z-m)+(m-n * z)=0$.

Prime number functions

Proof:
(1) $\mid: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\left\lvert\,(n, m)= \begin{cases}1 & \text { if } n \text { divides } m \\ 0 & \text { otherwise }\end{cases}\right.
$$

$\mid(n, m)=1$ iff $\exists z(n * z=m)$ iff $\prod_{z \leq m}(n * z-m)+(m-n * z)=0$.
$\mid(n, m)=1-\prod_{z \leq m}(n * z-m)+(m-n * z)$

Prime number functions

Proof:
(2) prime : $\mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\operatorname{prime}(n)= \begin{cases}1 & \text { if } n \text { prime } \\ 0 & \text { otherwise }\end{cases}
$$

Prime number functions

Proof:
(2) prime : $\mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\operatorname{prime}(n)= \begin{cases}1 & \text { if } n \text { prime } \\ 0 & \text { otherwise }\end{cases}
$$

$\operatorname{prime}(n)=1$ iff $(n \geq 2$ and $\forall y<n(y=0 \vee y=1 \vee \mid(y, n)=0)$

$$
\operatorname{prime}(n)=1-\left((2-n)+\sum_{y<n}(\mid(y, n) * y *((y-1)+(1-y)))\right)
$$

Prime number functions

Proof:
(3) The function $p: \mathbb{N} \rightarrow \mathbb{N}$ defined by: $p(n)=p_{n}$, the n-th prime number.
$p(0)=0$ and $p(1)=2$.
$p(n+1)$ is the smallest number i which is larger than $p(n)$ and is prime.

Prime number functions

Proof:
(3) The function $p: \mathbb{N} \rightarrow \mathbb{N}$ defined by: $p(n)=p_{n}$, the n-th prime number.
$p(0)=0$ and $p(1)=2$.
$p(n+1)$ is the smallest number i which is larger than $p(n)$ and is prime.
We also have an upper bound for the number i.
Recall the proof of the fact that the set of prime numbers is infinite.

$$
i \leq p(n)!+1
$$

$p(n+1)=\mu_{i \leq p(n)!+1} i[((1-\operatorname{prime}(i))+((p(n)+1)-i))=0]$

Prime number functions

Proof:

(4) $D: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by: $D(n, i)=k$ iff k is the power of the i-th prime number in the prime number decomposition of n.

$$
D(n, i)=\max \left(\left\{j \mid n \bmod p(i)^{j}=0\right\}\right)
$$

$$
\begin{aligned}
& D(0, i):=0 \\
& D(n, i)=\min \left(\left\{j \leq n|\quad|\left(p(i)^{j+1}, n\right)=0\right\}\right) \\
& D(n, i)=\mu_{j \leq n} j\left(\mid\left(p(i)^{j+1}, n\right)=0\right)
\end{aligned}
$$

