Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

14.11.2018

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

2. Register Machines

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

Last time: Register Machines

The register machine gets its name from its one or more “registers’:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a
single positive integer.

In comparison to Turing machines:

e equally powerful fundament for computability theory

e Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code

Last time: Register Machines

Definition
A register machine is a machine consisting of the following elements:

e A finite (but unbounded) number of registers x1, x2, X3 . .., Xp;
each register contains a natural number.

e A LOOP-, WHILE- or GOTO-program.

Last time: Register Machines — State

Definition (State of a register machine)
The state s of a register machine isa map: s: {x; | i € N} —- N
which associates with every register a natural number as value.

Definition (Initial state; Input)
Let my, ..., me € N be given as input to a register machine.
In the input state sy we have

o so(xi) =m;foralll < i<k
° So(X,') =0 foralli >k

Definition (Output)
If a register machine started with the input my, ..., m; € N halts in a state Sierm
then: Sierm(Xx+1) is the output of the machine.

Last time: Register Machines — Semantics

r

Definition (The semantics of a register machine)
The semantics A(P) of a register machine P is a (binary) relation

A(P)CSxS

on the set S of all states of the machine.

(s1,s2)€EA(P) means that if P is executed in state s; then it halts in state s;.

\

Last time: Computed function
4)

Definition (Computed function)

A register machine P computes a function f:Nf — N
if and only if for all my, ..., m, € N the following holds:

If we start P with initial state with the input mq, ..., my then:
e P terminates if and only if f(my, ..., m) is defined
e If P terminates, then the output of P is f(my, ..., mg)

e Additional condition
We additionally require that when a register machine halts, all the registers
(with the exception of the output register) contain again the values they had
in the initial state.

— Input registers xi, ..., xx contain the initial values

— The registers x; with i > k 4+ 1 contain value 0

g _J

Consequence: A machine which does not fulfill the additional condition (even only for
some inputs) does not compute a function at all.

Last time: Computed function

Example:
The program:
P :=loop xo do xp :=x» — 1 end; xp :=x» + 1;
loop x; do x1 := x; — 1 end

does not compute a function: At the end, P has value O in x; and 1 in xp.

Last time: Computable function

(Definition. A function f is A

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE

program, which computes f

e GOTO computable if there exists a register machine with a GOTO

program, which computes f

e [M computableif there exists a Turing machine which computes f)

10

Last time: Computable function

LOOP = Set of all total LOOP computable functions
WHILE = Set of all total WHILE computable functions
GOTO = Set of all total GOTO computable functions
TM = Set of all total TM computable functions
WHILEP¥" = Set of all total or partial WHILE computable functions

GOTOQPart
TMPart — Set of all total or partial TM computable functions

Set of all total or partial GOTO computable functions

11

Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

12

Last time: LOOP Programs - Syntax

4)

Definition

(1) Atomic programs: For each register x;:
- X =x +1
- Xxj=x; —1

are LOOP instructions and also LOOP programs.

(2) If P1, Py are LOOP programs then
— P1; Py is a LOOP program

(3) If Pisa LOOP program then

— loop x; do P endis a LOOP instruction and a LOOP program.
N J

The set of all LOOP programs is the smallest set with the properties

(1),(2).(3).

13

Last time: LOOP Programs - Semantics

(Definition (Semantics of LOOP programs)
Let P be a LOOP program. A(P) is inductively defined as follows:

(1) On atomic programs:
o A(x;:=x;+ 1)(s1,s2) if and only if:
- 5(x) =s1(x) +1
— s(xj) = s1(x;) for all j # i
o A(x;:=x; — 1)(s1,s2) if and only if:
si(x;)) — 1 if s1(x;) >0
— s(xi) = .
0 if si(x;) =0
9 — s(xj) = s1(xj) for all j # i

14

Last time: LOOP Programs - Semantics

(Definition (Semantics of LOOP programs))
Let P be a LOOP program. A(P) is inductively defined as follows:

(2) Sequential composition:

o A(Pi; Py)(s1,s) if and only if there exists s’ such that:
- A(Pl)(sl, S')
- A(PQ)(S,, 52)

(3) Loop programs

e A(loop x; do P end)(si, s2) if and only if there exist states s, s/, . . ., s with:
- Sl(X,') = n
- s1 =5
- s =5’
\ — A(P)(sp,spq) for0 < k < n)

Remark: The number of steps in the loop is the value of x; at the beginning of the
loop. Changes to x; during the loop are not relevant.

15

Last time: LOOP programs - Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input ny, ..., ng if its
execution on this input terminates (in the sense above) after a finite number

of steps.

Theorem. Every LOOP program terminates for every input.

Consequence: All LOOP computable functions are total.

16

LOOP Programs

Additional instructions

OX,'ZZO
loop x; do x; :=x; —1 end
e x; —cforceN
X,'Z:O;
Xi=x+1 |
> C times
xi=xi+1 |
OX,'Z:XJ'
x; = 0;

loop x; do x;:=x;+1 end

17

LOOP Programs

Additional instructions

Xj 1= Xj + X

Xj = X;;

loop x, do x;:=x;+1 end
Xj = Xj — Xk

Xj = X

loop x, do x;:=x;—1 end
Xj = Xj * X

Xj = 0;

loop xx do x; :=Xx; +Xx; end

18

LOOP Programs

Additional instructions

In what follows, xn, xp11,... denote new registers (not used before).

e x; .= e1 + e (e1, e arithmetical expressions)
Xj 1= et;
Xp = €9;
loop x, do x;:=x;+1 end; x, :=0

o x; .= e; — & (e1, e arithmetical expressions)
Xj 1= e1;
Xn -— €2,
loop x, do x;:=x;—1 end; x, :=0

e x; := e1 x e (e1, e arithmetical expressions)
x; = 0;

loop x, do x; :=x;+ e end; xp, :=0

19

LOOP Programs

Additional instructions

o if X, =0 then P; else P, end
Xp =1 — Xx;;
Xp+1 = 1 — Xp;
loop x, do P; end;
loop xp+1 do P> end;
Xp = 0;xp11 =0

o if x; <x; then P; else P, end
Xn 1= Xi — Xj;
if x, =0 then P; else P> end

xp =0

20

Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

21

WHILE Programs: Syntax

(Definition A
e Atomic programs: For each register x;:
- X =x+1
- xj=x; — 1

are WHILE instructions and WHILE programs.
o If P1, P> are WHILE programs then
— P1; P> is a WHILE program

o If Pisa WHILE program then
— while x; #0 do P endis a WHILE instruction and a WHILE
L program. y

The family of all WHILE programs is the smallest set with properties

(1).(2).(3)

WHILE Programs: Semantics

(Definition (Semantics of WHILE programs)
Let P be a WHILE program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s) if and only if:
— s(xi) = s1(x) + 1
— s3(xj) = s1(x;) for all j # i

o A(x;:=x; —1)(s1,s2) if and only if:

- s2(x) = si(xi) —1 ifs1(x;) >0
| 0 if Sl(X,') =0

_ — so(xj) = s1(xj) for all j # i

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. A(P) is inductively defined as follows:

(2) Sequential composition:

e A(P1; P2)(s1,sp) if and only if there exists s’ such that:
- A(Pl)(sl, S')
- A(PQ)(S,, 52)

24

WHILE Programs: Semantics

(Definition (Semantics of WHILE programs ctd.))

Let P be a WHILE program. A(P) is inductively defined as follows:
(3) While programs

e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states s], s/, ..., s; with:
—- 51 =5
- S = S,’7

— A(P)(s,s1,4) for 0 < k <n
— 5.(xi) #0for0 < k< n
= s;(xi) =0

25

WHILE Programs: Semantics

.

Definition (Semantics of WHILE programs ctd.)
Let P be a WHILE program. A(P) is inductively defined as follows:

(3) While programs

e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states sj, s/, ..., s/ with:
— 51 = 8§
— s = s/

A(P)(syr5ppq) for0< k<n
sp(xi) #0for 0 < k < n
S,’v(X,') =0

J

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.

Infinite loop are possible.

WHILE and LOOP

Theorem. LOOP C WHILE
i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction “loop x; do P end”
can be simulated by the following WHILE program P, ie:

while x; 20 do ** simulate x, := x; **
Xp = Xp + 1 Xpp1 i=Xpp1 + X i=x — 1

end;

while x,.1 # 0 do ** restore x; **
Xj = Xxj +1; Xpy1 = Xpp1 — 1

end:;

while x, # 0 do ** simulate the loop instruction **
P:x, =x, —1

end

Here xp, x4 1 are new registers (in which at the beginning 0 is stored; not used in P).

27

WHILE and LOOP

It is easy to see that the new WHILE program P, ‘simulates”
loop x; do P end , i.e.

(s,s") € A(loop x; do P end) iff (s,5") € A(Punile)

Using this, it can be proved (by structural induction) that every LOOP
program can be simulated by a WHILE program.

28

WHILE and LOOP

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.
for programs of the form x; := x; + 1 and of the form x; := x; — 1.
(Obviously true, because these programs are also WHILE programs).

29

WHILE and LOOP

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.
for programs of the form x; := x; + 1 and of the form x; := x; — 1.
(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

30

WHILE and LOOP

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.
for programs of the form x; := x; + 1 and of the form x; := x; — 1.
(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P;; P,. By the induction hypothesis, there exist WHILE programs P! P2’
with A(P;) = A(P!). Let P’ = P{; P; (a WHILE program).
A(P')(sl, sy) iff there exists s with A(P{)(sl, s) and A(Pé)(s, s9)
iff there exists s with A(P1)(sy,s) and A(Py)(s,sp) iff A(P)(s1.59)

31

WHILE and LOOP

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.
for programs of the form x; := x; + 1 and of the form x; := x; — 1.
(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = Py; P,. By the induction hypothesis, there exist WHILE programs P;, P,
with A(P;) = A(P/). Let P’ = P{; P; (a WHILE program).
A(P’)(sl, sy) iff there exists s with A(P{)(sl, s) and A(Pé)(s, s5)
iff there exists s with A(P1)(sy,s) and A(Py)(s,sp) iff A(P)(s1.59)
Case 2: P = loop x; do P;. By the induction hypothesis, there exists a WHILE
program P] with A(P;) = A(P]). Let P’ be the following WHILE program:
P/ = while xi #0 doxp :=xp+1Lixpp1 = xp41 + 1 x5 :=x; — 1 end;
while Xp+1 # 0 do x; := xj + 1?Xn—|—1 = Xpp1 — 1 end; while x, # 0 do P{;xn ‘= xp — 1 end

A(P,)(Sl, 52) = A(P)(Sl, 52) (show that P and =4 change values of registers in the same way).

32

LOOP C WHILE

Consequences of the proof:

.
Corollary
The instructions defined in the context of LOOP programs:

Xj = C Xj 1= X; Xj = Xj+C Xj 1= Xj + Xk
if x; =0 then P; else P; if x; < x; then P; else P;

can also be used in WHILE programs.

Xj = Xj * X,

33

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

34

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs

(are partial functions)

Example: P := while x; 20 do x; :=x31+1 end
computes f : N — N with:

0 ifn=0

f(n) :=
undefined ifn#£0

35

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

Notation
e WHILE = The set of all total WHILE computable functions

e WHILEP® = The set of all WHILE computable functions
(including the partial ones)

36

Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions

e WHILEP? = The set of all WHILE computable functions
(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?

37

Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions

e WHILEP? = The set of all WHILE computable functions
(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?

Later we will show that:

e one can construct a total TM computable function which cannot be

computed with a LOOP program

e WHILE computable = TM computable

38

Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

39

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.

40

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.

(Definition A
e Atomic programs:
xi:=x;+1
xi i =x; — 1
are GOTO instructions for each register Xx;.
e If x; is a register and j is an index then
if x;, =0 goto jis a GOTO instruction.
e If I1,..., 1, are GOTO instructions and ji, ..., jx are indices then
. J1:h; .. kil isa GOTO program)

41

Differences between WHILE and GOTO

Different structure:

e WHILE programs contain WHILE programs
Recursive definition of syntax and semantics.

e GOTO programs are a list of GOTO instructions
Non recursive definition of syntax and semantics.

42

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h; jo:h; ...; jk:lk

Let jix.1 be an index which does not occur in P (program end).

(Definition. A(P)(s1, s2) holds if and only if for every n > 0 there exist: A
e statess),..., s/
e indices zg, . . ., Zn
such that the following hold:
(1a) s; = s1
(1b) s/ = s,
(1c) 20 =4
(1d) z; = jkn1
and (continuation on next page))

43

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h;j2:b .. jk:lk

Let ji,1 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:

e statessy,...,s,

! n
e indices zp, ..., z,

such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
(2a) if Is is xj := x; + 1 then: 57 (x;) = s7(x;) + 1
s71(%) = 7 () for j # i

Zit+1 = Js+1

and (continuation on next page)

~

44

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=ji:h; j2:hk; .5 jk:lk

Let jix.1 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:)
e statessy,...,s,
e indices zg, ..., z,
such that the following hold:
(2) For 0 <[/ < n, if js: Is is the line in P with js = z:
(x)—1 if s/(x; 0
(2b) if Is is x; := x; — 1 then: s7,;(x;) = si (xi) s (i) >
0 if s'(x;)=0
siy1 () = s/ (x) for j # i
Zjy1 = Js+1
Gnd (continuation on next page))

45

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P=j1:h; jpo:h; .. jk:lk

Let ji,1 be an index which does not occur in P (program end).

(", .« el : . :
Definition (ctd.). A(P)(s1,s2) holds if and only if for every n > 0 there exist:
e statessy,...,s,
e indices zp, ..., z,
such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
(2¢) if Is is if x; = 0 goto jgoto then: s,-'+1 = s,-'
{ Jeoto i Xi =0
Zi+1 = . .
Js+1 otherwise
. W,

46

GOTO Programs: Semantics

Remark
The number of line changes (iterations) is not fixed at the beginning.
Infinite loops are possible.

47

GOTO Programs: Semantics

Remark
The number of line changes (iterations) is not fixed at the beginning.
Infinite loops are possible.

Notation
e GOTO = The set of all total GOTO computable functions

e GOTOP = The set of all GOTO computable functions
(including the partial ones)

48

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP?® = GOTOQP2"t

49

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP?® = GOTOQP2"t

Proof:
To show:

. WHILE C GOTO and WHILEP"* C GOTQPa"

Il. GOTO C WHILE and GOTOP"t C WHILEP"

50

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQPart

Proof:
. WHILE C GOTO and WHILEP2't C GOTQP2"

It is sufficient to prove that while x; 4 0 do P end can be simulated with
GOTO instructions.

We can assume without loss of generality that P does not contain any while
(we can replace the occurrences of “while” from inside out).

51

WHILE and GOTO

Proof (ctd.)
while x; 7 0 do P end

Is replaced by:

Jj1: if x; =0 goto J3;
P/.
Jo : if xo = 0 goto Ji; ** Since x, = 0 unconditional jump **
J3: Xpi=xp—1
where:

® X, is a new register, which was not used before.

e P’ is obtained from P by possibly renaming the indices.

52

WHILE and GOTO

Proof (ctd.)
while x; 7 0 do P end

Is replaced by:

Jj1: if x; =0 goto J3;
PI.
Jo : if xo, = 0 goto Ji; ** Since x; = 0 unconditional jump **
Jj3: Xpi=xnp—1
where:
® X, is a new register, which was not used before.

e P’ is obtained from P by possibly renaming the indices.

Remark: Totality is preserved by this transformation. Semantics is the same.

53

WHILE and GOTO

Proof (ctd.)

Using the fact that while x; # 0 do P end can be simulated by a GOTO
program we can show (by structural induction) that every WHILE program
can be simulated by a GOTO program.

54

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP™ = GOTOP™"

Proof: I. WHILE C GOTO; WHILEP*™ C GOTOP" (WHILE programs expressible as
GOTO programs). Proof by structural induction.

55

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP™ = GOTOP™"

Proof: I. WHILE C GOTO; WHILEP*™™ C GOTOP** (WHILE programs expressible as
GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,
i.e. for programs of the form x; := x; & 1 (expressible as j : x; := x; &+ 1).

56

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP™ = GOTOP™"

Proof: I. WHILE C GOTO; WHILEP*™™ C GOTOP** (WHILE programs expressible as
GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,
i.e. for programs of the form x; := x; & 1 (expressible as j : x; := x; &+ 1).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

57

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP™ = GOTOP™"

Proof: I. WHILE C GOTO; WHILEP*™™ C GOTOP** (WHILE programs expressible as
GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,
i.e. for programs of the form x; := x; & 1 (expressible as j : x; := x; &+ 1).

Let P be a non-atomic WHILE program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P;; P,. By the induction hypothesis, there exist GOTO programs P{, P,
with A(P;) = A(P/). We can assume w.l.o.g. that the indices used for labelling
the instructions are disjoint. Let P" = P/; P; (a GOTO program). We can show
that A(P’)(s1, s2) iff A(P)(s1,s2) as before.

58

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP* = GOTOP?"

Proof: I. WHILE C GOTO; WHILEP*™ C GOTOP™ (WHILE programs expressible as
GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,
i.e. for programs of the form x; := x; £ 1 (expressible as j : x; := x; & 1).

Let P be a non-atomic WHILE program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P;; P,. By the induction hypothesis, there exist GOTO programs P;, P,
with A(P;) = A(P/). We can assume w.l.o.g. that the indices used for labelling
the instructions are disjoint. Let P’ = P{; P; (a GOTO program). We can show
that A(P’)(s1, s2) iff A(P)(s1,s2) as before.

Case 2: P = while x; # 0 do P; end . By the induction hypothesis, there exists a

GOTO program P{ such that A(P;) = A(P]). Let P’ be the following GOTO
program: j; : if x; = 0 goto j3; P’ Jo i ifxp =0gotoj1; j3: xp :=xp — 1
It can be checked that A(P’)(s1, s2) iff A(P)(s1, 52).

59

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQPart

Proof:
II. GOTO C WHILE and GOTOP2"t C WHILEPa"t

It is sufficient to prove that every GOTO program can be simulated with
WHILE instructions.

60

WHILE and GOTO

Proof (ctd.)
Jr:hi i by Iy

is replaced by the following while program:

Xindex ::.il;

while Xindex 75 0 do
if Xindex = Jj1 then I end;
if Xindex = J2 then I end;

if Xindex = Jk then I} end
end

61

WHILE and GOTO

Proof (ctd.)
Jiihsgo bk Ik

Is replaced by the following while program:

fFor1§i<k:

Xindex = J1; _
while Xndex 7Z 0 do It Iiis xj = x; £ 1
if Xindex = Jj1 then I end; 1" is x; := x; = 1; Xindex 1= Jit1

if Xindex = J2 then 12, end;
If I; is if x; = 0 goto Jjgoto:

if x; — ji then I/ end . :

index = Jk k Ii, is if x; =0 then Xhdex := Jgoto
end
else Xindex = Ji+1 end

dn addition, jxi1 =0

62

GOTO and WHILE are equally powerful

Consequences of the proof:

(Corollary 1
The instructions defined in the context of LOOP programs:

Xj:=¢C Xj 1= X; Xj = Xj+C Xj 1= Xj + Xk Xj = Xj * X,
if x; =0 then P; else P; if x; < x; then P; else P;

can also be used in GOTO programs.

63

GOTO and WHILE are equally powerful

Consequences of the proof:

~

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

64

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

. S

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only
one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P’.
P’ can be simulated by a WHILE-IF program with one WHILE loop only.

65

GOTO and WHILE are equally powerful

r Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming

66

GOTO and WHILE are equally powerful

r Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)

67

Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

68

Relationships

Already shown:

LOOP C WHILE = GOTO ¢ WHILEP™ = GOTOP"

69

Relationships

Already shown:

LOOP C WHILE = GOTO ¢ WHILEP™ = GOTOP"

To be proved:

e LOOP # WHILE
e WHILE = TM and WHILEP2rt = TMPpart

70

