Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

14.11.2018

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- ullet Other computation models: e.g. Büchi Automata, λ -calculus

2. Register Machines

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Last time: Register Machines

The register machine gets its name from its one or more "registers":

In place of a Turing machine's tape and head (or tapes and heads) the model uses multiple, uniquely-addressed registers, each of which holds a single positive integer.

In comparison to Turing machines:

- equally powerful fundament for computability theory
- Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages pseudo-code

Last time: Register Machines

Definition

A register machine is a machine consisting of the following elements:

- A finite (but unbounded) number of registers $x_1, x_2, x_3, \dots, x_n$; each register contains a natural number.
- A LOOP-, WHILE- or GOTO-program.

Last time: Register Machines - State

Definition (State of a register machine)

The state s of a register machine is a map: $s: \{x_i \mid i \in \mathbb{N}\} \to \mathbb{N}$ which associates with every register a natural number as value.

Definition (Initial state; Input)

Let $m_1, \ldots, m_k \in \mathbb{N}$ be given as input to a register machine.

In the input state s_0 we have

- $s_0(x_i) = m_i$ for all $1 \le i \le k$
- $s_0(x_i) = 0$ for all i > k

Definition (Output)

If a register machine started with the input $m_1, \ldots, m_k \in \mathbb{N}$ halts in a state s_{term} then: $s_{\text{term}}(x_{k+1})$ is the output of the machine.

Last time: Register Machines – Semantics

Definition (The semantics of a register machine)

The semantics $\Delta(P)$ of a register machine P is a (binary) relation

$$\Delta(P) \subseteq S \times S$$

on the set S of all states of the machine.

 $(s_1, s_2) \in \Delta(P)$ means that if P is executed in state s_1 then it halts in state s_2 .

Last time: Computed function

Definition (Computed function)

A register machine P computes a function $f: \mathbb{N}^k \to \mathbb{N}$ if and only if for all $m_1, \ldots, m_k \in \mathbb{N}$ the following holds:

If we start P with initial state with the input m_1, \ldots, m_k then:

- P terminates if and only if $f(m_1, \ldots, m_k)$ is defined
- If P terminates, then the output of P is $f(m_1, \ldots, m_k)$
- Additional condition

We additionally require that when a register machine halts, all the registers (with the exception of the output register) contain again the values they had in the initial state.

- Input registers x_1, \ldots, x_k contain the initial values
- The registers x_i with i > k + 1 contain value 0

Consequence: A machine which does not fulfill the additional condition (even only for some inputs) does not compute a function at all.

Last time: Computed function

Example:

The program:

$$P := \text{loop } x_2 \text{ do } x_2 := x_2 - 1 \text{ end}; \ x_2 := x_2 + 1;$$

 $\text{loop } x_1 \text{ do } x_1 := x_1 - 1 \text{ end}$

does not compute a function: At the end, P has value 0 in x_1 and 1 in x_2 .

Last time: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes *f*
- WHILE computable if there exists a register machine with a WHILE program, which computes *f*
- GOTO computable if there exists a register machine with a GOTO program, which computes f
- TM computableif there exists a Turing machine which computes f

Last time: Computable function

```
LOOP = Set of all total LOOP computable functions

WHILE = Set of all total WHILE computable functions

GOTO = Set of all total GOTO computable functions

TM = Set of all total TM computable functions
```

```
WHILE^{part} = Set of all total or partial WHILE computable functions GOTO^{part} = Set of all total or partial GOTO computable functions TM^{part} = Set of all total or partial TM computable functions
```

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Last time: LOOP Programs - Syntax

Definition

- (1) **Atomic programs:** For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are LOOP instructions and also LOOP programs.

- (2) If P_1 , P_2 are LOOP programs then
 - P_1 ; P_2 is a LOOP program
- (3) If P is a LOOP program then
 - loop x_i do P end is a LOOP instruction and a LOOP program.

The set of all LOOP programs is the smallest set with the properties (1),(2),(3).

Last time: LOOP Programs - Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(1) On atomic programs:

- $\Delta(x_i := x_i + 1)(s_1, s_2)$ if and only if:
 - $s_2(x_i) = s_1(x_i) + 1$
 - $s_2(x_j) = s_1(x_j)$ for all $j \neq i$
- $\Delta(x_i := x_i 1)(s_1, s_2)$ if and only if:

$$- s_2(x_i) = \begin{cases} s_1(x_i) - 1 & \text{if } s_1(x_i) > 0 \\ 0 & \text{if } s_1(x_i) = 0 \end{cases}$$

-
$$s_2(x_j) = s_1(x_j)$$
 for all $j \neq i$

Last time: LOOP Programs - Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(2) Sequential composition:

- $\Delta(P_1; P_2)(s_1, s_2)$ if and only if there exists s' such that:
 - $\Delta(P_1)(s_1,s')$
 - $\Delta(P_2)(s', s_2)$

(3) Loop programs

- $\Delta(\text{loop } x_i \text{ do } P \text{ end})(s_1, s_2)$ if and only if there exist states s_0', s_1', \ldots, s_n' with:
 - $-s_1(x_i)=n$
 - $s_1 = s'_0$
 - $s_2 = s_n'$
 - $\Delta(P)(s'_k, s'_{k+1})$ for $0 \le k < n$

Remark: The number of steps in the loop is the value of x_i at the beginning of the loop. Changes to x_i during the loop are not relevant.

Last time: LOOP programs - Semantics

Program end: If there is no next program line, then the program execution terminates.

We say that a LOOP program terminates on an input n_1, \ldots, n_k if its execution on this input terminates (in the sense above) after a finite number of steps.

Theorem. Every LOOP program terminates for every input.

Consequence: All LOOP computable functions are total.

Additional instructions

- $ullet x_i := 0$ $lacksymbol{\mathsf{loop}} x_i \ \mathsf{do} \ x_i := x_i 1 \ \mathsf{end}$
- $x_i := c$ for $c \in \mathbb{N}$

$$egin{aligned} x_i &:= 0; \ x_i &:= x_i + 1; \ \dots \ x_i &:= x_i + 1 \end{aligned}
ight\} egin{aligned} c ext{ times} \end{aligned}$$

 \bullet $x_i := x_j$ $x_i := 0;$ loop x_i do $x_i := x_i + 1$ end

Additional instructions

- $x_i := x_j + x_k$ $x_i := x_j;$ $loop x_k do x_i := x_i + 1 end$
- $x_i := x_j x_k$ $x_i := x_j;$ $loop x_k do x_i := x_i - 1 end$
- $x_i := x_j * x_k$ $x_i := 0;$ loop x_k do $x_i := x_i + x_i$ end

Additional instructions

In what follows, x_n, x_{n+1}, \ldots denote new registers (not used before).

```
• x_i := e_1 + e_2 (e_1, e_2 arithmetical expressions)
  x_i := e_1;
   x_n := e_2;
   loop x_n do x_i := x_i + 1 end; x_n := 0
• x_i := e_1 - e_2 (e_1, e_2 arithmetical expressions)
  x_i := e_1;
  x_n := e_2;
   loop x_n do x_i := x_i - 1 end; x_n := 0
• x_i := e_1 * e_2 (e_1, e_2 \text{ arithmetical expressions})
  x_i := 0;
  x_n := e_1;
   loop x_n do x_i := x_i + e_2 end; x_n := 0
```

Additional instructions

- if $x_i = 0$ then P_1 else P_2 end $x_n := 1 x_i$; $x_{n+1} := 1 x_n$; loop x_n do P_1 end; loop x_{n+1} do P_2 end; $x_n := 0$; $x_{n+1} := 0$
- if $x_i \le x_j$ then P_1 else P_2 end $x_n := x_i x_j$; if $x_n = 0$ then P_1 else P_2 end $x_n := 0$

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

WHILE Programs: Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are WHILE instructions and WHILE programs.

- If P_1 , P_2 are WHILE programs then
 - P_1 ; P_2 is a WHILE program
- If *P* is a WHILE program then
 - while $x_i \neq 0$ do P end is a WHILE instruction and a WHILE program.

The family of all WHILE programs is the smallest set with properties (1),(2),(3)

Definition (Semantics of WHILE programs)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(1) On atomic programs:

- \bullet $\Delta(x_i := x_i + 1)(s_1, s_2)$ if and only if:
 - $s_2(x_i) = s_1(x_i) + 1$
 - $s_2(x_j) = s_1(x_j)$ for all $j \neq i$
- $\Delta(x_i := x_i 1)(s_1, s_2)$ if and only if:

$$- s_2(x_i) = \begin{cases} s_1(x_i) - 1 & \text{if } s_1(x_i) > 0 \\ 0 & \text{if } s_1(x_i) = 0 \end{cases}$$

-
$$s_2(x_j) = s_1(x_j)$$
 for all $j \neq i$

Definition (Semantics of WHILE programs)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(2) Sequential composition:

- $\Delta(P_1; P_2)(s_1, s_2)$ if and only if there exists s' such that:
 - $-\Delta(P_1)(s_1,s')$
 - $-\Delta(P_2)(s',s_2)$

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(3) While programs

• Δ (while $x_i \neq 0$ do P end) (s_1, s_2) if and only if there exists $n \in \mathbb{N}$ and there exist states s'_0, s'_1, \ldots, s'_n with:

$$- s_1 = s'_0$$

$$- s_2 = s'_n$$

$$-\Delta(P)(s'_k, s'_{k+1})$$
 for $0 \le k < n$

$$- s'_k(x_i) \neq 0$$
 for $0 \leq k < n$

$$- s_n'(x_i) = 0$$

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(3) While programs

- Δ (while $x_i \neq 0$ do P end) (s_1, s_2) if and only if there exists $n \in \mathbb{N}$ and there exist states s'_0, s'_1, \ldots, s'_n with:
 - $s_1 = s'_0$
 - $s_2 = s'_n$
 - $-\Delta(P)(s'_k, s'_{k+1})$ for $0 \le k < n$
 - $s'_k(x_i) \neq 0$ for $0 \leq k < n$
 - $-s_n'(x_i)=0$

Remark: The number of loop iterations is not fixed at the beginning. The contents of P may influence the number of iterations. Infinite loop are possible.

Theorem. LOOP \subseteq WHILE

i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction "loop x_i do P end" can be simulated by the following WHILE program P_{while} :

```
while x_i \neq 0 do ** simulate x_n := x_i ** end; ** while x_{n+1} \neq 0 do ** restore x_i ** restore x_i ** restore x_i ** end; ** while x_{n+1} \neq 0 do ** simulate x_n := x_i ** restore x_i ** restore x_i ** end; ** simulate x_n := x_i ** restore x_i ** simulate the loop instruction ** P; x_n := x_n - 1 end
```

Here x_n, x_{n+1} are new registers (in which at the beginning 0 is stored; not used in P).

It is easy to see that the new WHILE program P_{while} "simulates" loop x_i do P end , i.e.

$$(s, s') \in \Delta(\text{loop } x_i \text{ do } P \text{ end}) \text{ iff } (s, s') \in \Delta(P_{\text{while}})$$

Using this, it can be proved (by structural induction) that every LOOP program can be simulated by a WHILE program.

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e. for programs of the form $x_i := x_i + 1$ and of the form $x_i := x_i - 1$. (Obviously true, because these programs are also WHILE programs).

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e. for programs of the form $x_i := x_i + 1$ and of the form $x_i := x_i - 1$. (Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e. for programs of the form $x_i := x_i + 1$ and of the form $x_i := x_i - 1$. (Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

```
Case 1: P = P_1; P_2. By the induction hypothesis, there exist WHILE programs P_1', P_2' with \Delta(P_i) = \Delta(P_i'). Let P' = P_1'; P_2' (a WHILE program). \Delta(P')(s_1, s_2) \quad \text{iff} \quad \text{there exists $s$ with } \Delta(P_1')(s_1, s) \text{ and } \Delta(P_2')(s, s_2) \quad \text{iff} \quad \text{there exists $s$ with } \Delta(P_1)(s_1, s) \text{ and } \Delta(P_2)(s, s_2) \quad \text{iff} \quad \Delta(P)(s_1, s_2)
```

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e. for programs of the form $x_i := x_i + 1$ and of the form $x_i := x_i - 1$. (Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

Case 1: $P = P_1$; P_2 . By the induction hypothesis, there exist WHILE programs P_1' , P_2' with $\Delta(P_i) = \Delta(P_i')$. Let $P' = P_1'$; P_2' (a WHILE program). $\Delta(P')(s_1, s_2) \quad \text{iff} \quad \text{there exists } s \text{ with } \Delta(P_1')(s_1, s) \text{ and } \Delta(P_2')(s, s_2)$ iff $\Delta(P)(s_1, s_2) \quad \text{iff} \quad \Delta(P)(s_1, s_2)$

Case 2: $P = \text{loop } x_i \text{ do } P_1$. By the induction hypothesis, there exists a WHILE program P_1' with $\Delta(P_1) = \Delta(P_1')$. Let P' be the following WHILE program: $P' = \text{while } x_i \neq 0 \text{ do } x_n := x_n + 1; x_{n+1} := x_{n+1} + 1; x_i := x_i - 1 \text{ end};$ while $x_{n+1} \neq 0 \text{ do } x_i := x_i + 1; x_{n+1} := x_{n+1} - 1 \text{ end};$ while $x_n \neq 0 \text{ do } P_1'; x_n := x_n - 1 \text{ end}$ $\Delta(P')(s_1, s_2) = \Delta(P)(s_1, s_2)$ (show that P and P' change values of registers in the same way).

LOOP \subseteq **WHILE**

Consequences of the proof:

Corollary

The instructions defined in the context of LOOP programs:

$$x_i := c$$
 $x_i := x_j$ $x_i := x_j + c$ $x_i := x_j + x_k$ $x_i = x_j * x_k$, if $x_i = 0$ then P_i else P_j if $x_i \le x_j$ then P_i else P_j

can also be used in WHILE programs.

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Example: $P := \text{while } x_1 \neq 0 \text{ do } x_1 := x_1 + 1 \text{ end}$

computes $f: \mathbb{N} \to \mathbb{N}$ with:

$$f(n) := \begin{cases} 0 & \text{if } n = 0 \\ \text{undefined} & \text{if } n \neq 0 \end{cases}$$

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Partial WHILE computable functions

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Partial WHILE computable functions

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Later we will show that:

- one can construct a total TM computable function which cannot be computed with a LOOP program
- WHILE computable = TM computable

Overview

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

GOTO Programs: Syntax

Definition: An index (line number) is a natural number $j \ge 0$.

GOTO Programs: Syntax

Definition: An index (line number) is a natural number $j \geq 0$.

Definition

Atomic programs:

$$x_i := x_i + 1$$
 $x_i := x_i - 1$ are GOTO instructions for each register x_i .

- If x_i is a register and j is an index then if $x_i = 0$ goto j is a GOTO instruction.
- If I_1, \ldots, I_k are GOTO instructions and j_1, \ldots, j_k are indices then $j_1 : I_1; \ldots; j_k : I_k$ is a GOTO program

Differences between WHILE and GOTO

Different structure:

- WHILE programs contain WHILE programs
 Recursive definition of syntax and semantics.
- GOTO programs are a list of GOTO instructions
 Non recursive definition of syntax and semantics.

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition. $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(1a)
$$s_0' = s_1$$

(1b)
$$s'_n = s_2$$

(1c)
$$z_0 = j_1$$

$$(1d) \quad z_n = j_{k+1}$$

and

(continuation on next page)

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(2) For $0 \le l \le n$, if $j_s : l_s$ is the line in P with $j_s = z_l$:

(2a) if
$$I_s$$
 is $x_i := x_i + 1$ then: $s'_{i+1}(x_i) = s'_i(x_i) + 1$ $s'_{i+1}(x_j) = s'_i(x_j)$ for $j \neq i$ $z_{i+1} = j_{s+1}$

and

(continuation on next page)

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(2) For $0 \le l \le n$, if $j_s : l_s$ is the line in P with $j_s = z_l$:

(2b) if
$$I_s$$
 is $x_i := x_i - 1$ then: $s'_{i+1}(x_i) = \begin{cases} s'_i(x_i) - 1 & \text{if } s'_i(x_i) > 0 \\ 0 & \text{if } s'_i(x_i) = 0 \end{cases}$

$$s'_{i+1}(x_j) = s'_i(x_j) \text{ for } j \neq i$$

$$z_{i+1} = j_{s+1}$$

and

(continuation on next page)

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(2) For $0 \le l \le n$, if $j_s : l_s$ is the line in P with $j_s = z_l$:

(2c) if
$$I_s$$
 is if $x_i = 0$ goto j_{goto} then: $s'_{i+1} = s'_i$
$$z_{i+1} = \begin{cases} j_{\text{goto}} & \text{if } x_i = 0 \\ j_{s+1} & \text{otherwise} \end{cases}$$

Remark

The number of line changes (iterations) is not fixed at the beginning. Infinite loops are possible.

Remark

The number of line changes (iterations) is not fixed at the beginning. Infinite loops are possible.

Notation

- GOTO = The set of all total GOTO computable functions
- GOTO^{part} = The set of all GOTO computable functions (including the partial ones)

Theorem.

- (1) WHILE = GOTO
- (2) $WHILE^{part} = GOTO^{part}$

Theorem.

- (1) WHILE = GOTO
- (2) WHILE $^{part} = GOTO^{part}$

Proof:

To show:

I. WHILE \subseteq GOTO and WHILE^{part} \subseteq GOTO^{part}

II. GOTO \subseteq WHILE and GOTO^{part} \subseteq WHILE^{part}

Theorem.

- (1) WHILE = GOTO
- (2) WHILE $^{part} = GOTO^{part}$

Proof:

I. WHILE \subseteq GOTO and WHILE^{part} \subseteq GOTO^{part}

It is sufficient to prove that while $x_i \neq 0$ do P end can be simulated with GOTO instructions.

We can assume without loss of generality that P does not contain any while (we can replace the occurrences of "while" from inside out).

Proof (ctd.)

```
while x_i \neq 0 do P end
```

is replaced by:

```
j_1: if x_i = 0 goto j_3; P'; j_2: if x_n = 0 goto j_1; ** Since x_n = 0 unconditional jump ** j_3: x_n := x_n - 1
```

where:

- \bullet x_n is a new register, which was not used before.
- P' is obtained from P by possibly renaming the indices.

Proof (ctd.)

```
while x_i \neq 0 do P end
```

is replaced by:

```
j_1: if x_i = 0 goto j_3; P'; j_2: if x_n = 0 goto j_1; ** Since x_n = 0 unconditional jump ** j_3: x_n := x_n - 1
```

where:

- \bullet x_n is a new register, which was not used before.
- P' is obtained from P by possibly renaming the indices.

Remark: Totality is preserved by this transformation. Semantics is the same.

Proof (ctd.)

Using the fact that while $x_i \neq 0$ do P end can be simulated by a GOTO program we can show (by structural induction) that every WHILE program can be simulated by a GOTO program.

Theorem. WHILE = GOTO; WHILE $^{part} = GOTO^{part}$

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Theorem. WHILE = GOTO; WHILE^{part} = GOTO^{part}

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).

Theorem. WHILE = GOTO; WHILE $^{part} = GOTO^{part}$

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

Theorem. WHILE = GOTO; WHILE^{part} = GOTO^{part}

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

Case 1: $P = P_1$; P_2 . By the induction hypothesis, there exist GOTO programs P_1' , P_2' with $\Delta(P_i) = \Delta(P_i')$. We can assume w.l.o.g. that the indices used for labelling the instructions are disjoint. Let $P' = P_1'$; P_2' (a GOTO program). We can show that $\Delta(P')(s_1, s_2)$ iff $\Delta(P)(s_1, s_2)$ as before.

Theorem. WHILE = GOTO; WHILE^{part} = GOTO^{part}

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

- Case 1: $P = P_1$; P_2 . By the induction hypothesis, there exist GOTO programs P_1' , P_2' with $\Delta(P_i) = \Delta(P_i')$. We can assume w.l.o.g. that the indices used for labelling the instructions are disjoint. Let $P' = P_1'$; P_2' (a GOTO program). We can show that $\Delta(P')(s_1, s_2)$ iff $\Delta(P)(s_1, s_2)$ as before.
- Case 2: $P = \text{while } x_i \neq 0 \text{ do } P_1 \text{ end}$. By the induction hypothesis, there exists a GOTO program P_1' such that $\Delta(P_1) = \Delta(P_1')$. Let P' be the following GOTO program: j_1 : if $x_i = 0$ goto j_3 ; P'; j_2 : if $x_n = 0$ goto j_1 ; j_3 : $x_n := x_n 1$ It can be checked that $\Delta(P')(s_1, s_2)$ iff $\Delta(P)(s_1, s_2)$.

Theorem.

- (1) WHILE = GOTO
- (2) $WHILE^{part} = GOTO^{part}$

Proof:

II. GOTO \subseteq WHILE and GOTO^{part} \subseteq WHILE^{part}

It is sufficient to prove that every GOTO program can be simulated with WHILE instructions.

```
Proof (ctd.)
j_1: I_1; j_2: I_2; ...; j_k: I_k
```

is replaced by the following while program:

```
x_{\mathrm{index}} := j_1;
while x_{\mathrm{index}} \neq 0 do

if x_{\mathrm{index}} = j_1 then l_1' end;

if x_{\mathrm{index}} = j_2 then l_2' end;

...

if x_{\mathrm{index}} = j_k then l_k' end end
```

```
Proof (ctd.)
j_1: I_1; j_2: I_2; ...; j_k: I_k
```

is replaced by the following while program:

```
x_{	ext{index}} := j_1;
while x_{	ext{index}} \neq 0 do

if x_{	ext{index}} = j_1 then l_1' end;

if x_{	ext{index}} = j_2 then l_2' end;

...

if x_{	ext{index}} = j_k then l_k' end end
```

```
For 1 \le i < k:

If I_i is x_i := x_i \pm 1:

I_i' \text{ is } x_i := x_i \pm 1; x_{\text{index}} := j_{i+1}
If I_i is if x_i = 0 goto j_{\text{goto}}:

I_i' \text{ is if } x_i = 0 \text{ then } x_{\text{index}} := j_{\text{goto}}
\text{else } x_{\text{index}} := j_{i+1} \text{ end}
In addition, j_{k+1} = 0
```

Consequences of the proof:

Corollary 1

The instructions defined in the context of LOOP programs:

$$x_i := c$$
 $x_i := x_j$ $x_i := x_j + c$ $x_i := x_j + x_k$ $x_i = x_j * x_k$, if $x_i = 0$ then P_i else P_j if $x_i \le x_j$ then P_i else P_j

can also be used in GOTO programs.

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Proof: We showed that:

- (i) every WHILE program can be simulated by a GOTO program
- (ii) every GOTO program can be simulated by a WHILE program with only one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P'. P' can be simulated by a WHILE-IF program with one WHILE loop only.

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming "Spaghetti-Code" (GOTO) ist not more powerful than "structured code" (WHILE)

Register Machines: Overview

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Relationships

Already shown:

$$\mathsf{LOOP} \subseteq \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part}$$

Relationships

Already shown:

$$\mathsf{LOOP} \subseteq \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part}$$

To be proved:

- LOOP ≠ WHILE
- WHILE = TM and WHILE part = TM part