Advanced Topics in Theoretical Computer Science

Part 2: Register machines (3)

21.11.2018

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Exam

Which week is better?

e Week 11.02-15.02.2019
e Week 18.02-22.02.2019
e Week 25.02-1.03.2019

Doodle: decision until next week

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

2. Register Machines

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

Until now

e Register machines (definition; state; input/output; semantics)

Computed function

Computable functions (LOOP, WHILE, GOTO, TM)

e LOOP Programs (syntax, semantics)
Every LOOP program terminates for every input
All LOOP computable functions are total

Additional instructions

e WHILE Programs (syntax, semantics)
WHILE programs do not always terminate

WHILE computable functions can be undefined for some inputs

e GOTO Programs (syntax, semantics)

GOTO programs do not always terminate

Register Machines

Definition
A register machine is a machine consisting of the following elements:

e A finite (but unbounded) number of registers x1, x2, X3 . .., Xp;
each register contains a natural number.

e A LOOP-, WHILE- or GOTO-program.

Register Machines: Computable function

(Definition. A function f is A

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE

program, which computes f

e GOTO computable if there exists a register machine with a GOTO

program, which computes f

e [M computableif there exists a Turing machine which computes fJ

Computable functions

LOOP
WHILE
WHILEP"

GOTO
GOTOPart

™
T MPart

Set of all LOOP computable functions

Set of all total WHILE computable functions
Set of all WHILE computable functions
(including the partial ones)

Set of all total GOTO computable functions
Set of all GOTO computable functions
(including the partial ones)

Set of all total TM computable functions
Set of all TM computable functions

(including the partial ones)

Relationships between LOOP, WHILE, GOTO

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Corollary
The instructions defined in the context of LOOP programs:

Xji = C Xj 1= Xj Xj := Xj+ C Xj = Xj + Xk Xi = Xj * Xk,
if x; = 0 then P; else P; if x; < x; then P; else P;

 can also be used in WHILE programs.

WHILE and GOTO

Theorem. WHILE = GOTO; WHILEP™ — GOTOP"

Consequences of the proof:

rCorollary 1. The instructions defined in the context of LOOP programs:

Xi = C Xj 1= Xj Xj := Xj+ C Xj = Xj + Xk Xi = Xj * Xk,
if x; = 0 then P; else P; if x; < x; then P; else P;

can also be used in GOTO programs.
. J

Corollary 2. Every WHILE computable function can be computed by a WHILE+IF
program with one while loop only.

e GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)

10

Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

11

Relationships

Already shown:

LOOP C WHILE = GOTO ¢ WHILEP™* = GOTOP™"

12

Relationships

Already shown:

LOOP C WHILE = GOTO ¢ WHILEP™* = GOTOP™"

To be proved:
e LOOP # WHILE
e WHILE = TM and WHILEPat = TMpPart

13

GOTO C TM

Theorem GOTO C TM and GOTQP™ C TMPart

14

GOTO C TM

Theorem. GOTO C TM and GOTOP C TMPa"t

Proof (idea)

It is sufficient to prove that for every GOTO program
P= j:h;ij2:hi . jk: Ik

we can construct an equivalent Turing machine.

15

GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171}
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /,.

e When M is in state s,, it does what corresponds to instruction /;:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

16

GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171}
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /,.

e When M is in state s,, it does what corresponds to instruction /;:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.

17

GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

In M,

xi:=x;i+1 | > |(i)R(i)

xi=xi—1 | > L0 7~y RU)
1O
A

GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

In M, P M,
xi=xi+1 | > |(i)R(i) Pny; Pn, > My, M,
xi=xi—1 | > 10) RO jn 1 if x; = 0 goto ji | > L) R M
110 110
#(i) R() _ M1 1

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM
with only one tape.

20

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equovalent Standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

21

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that
T™M C GOTO and therefore TM = GOTO = WHILE.

22

LOOP + TM

In what follows we consider only LOOP programs which have only one
input.

23

LOOP + TM

In what follows we consider only LOOP programs which have only one
input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM

24

LOOP + TM

In what follows we consider only LOOP programs which have only one

input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM

Idea of the proof:

For every unary LOOP-computable function f : N — N there exists a LOOP program
Pr which computes it.

We show that:
e The set of all unary LOOP programs is recursively enumerable

e There exists a Turing machine M;ppop such that if Py, P>, P3,... is an
enumeration of all (unary) LOOP programs then if P; computes from input m
output o then M;ppop computes from input (i, m) the output o.

e We construct a TM-computable function which is not LOOP computable using
a ‘diagonalisation” argument.

25

LOOP + TM

Lemma. The set of all LOOP programs is recursively enumerable.

26

LOOP + TM

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (ldea) Regard any LOOP program as a word over the alphabet:

Yoop=1{;, x, : =, +, —, 1, loop,do,end}

X; Is encoded as x'.

We can easily construct a grammar which generates all LOOP programs.

Proposition (T1 1): The recursively enumerable languages are exactly the
languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and
Turing machines

27

LOOP + TM

Lemma.
There exists a Turing machine M;pop which simulates all LOOP programs

More precisely:

Let P1, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

28

LOOP + TM

Lemma.
There exists a Turing machine M;pop which simulates all LOOP programs

More precisely:
Let P1, P>, P3,... be an enumeration of all LOOP programs.
If P; computes from input m output o then M;ppop computes from input

(i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

29

LOOP + TM

.

Lemma.
There exists a Turing machine M| pop which simulates all LOOP programs.

More precisely:

Let Py, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M, ppop computes from input
(i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

30

LOOP + TM

Theorem: LOOP # TM

Proof: Let W : N — N be defined by:
V(i) = P;j(i)+1 Output of the i-th LOOP program P; on input i
to which 1 is added.
WV is clearly total. We will show that the following hold:
Claim 1: ¥ € TM
Claim 2: ¥ ¢ LOOP

31

LOOP + TM

Claml: v & TM

Proof: We have shown that:

e the set of all LOOP programs is r.e., i.e. there is a Turing machine M
which enumerates Py, ..., Py, ... (as Godel numbers)

e there exists a Turing machine M;ppop which simulates all LOOP
programs

In order to construct a Turing machine which computes W we proceed as
follows:

e We use My to compute from i the LOOP program P;
e We use M;ppop to compute P;(i)

e We add 1 to the result.

32

LOOP + TM

Claim 2: ¥ ¢ LOOP

Proof: We assume, in order to derive a contradiction, that WV € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).
° \U(io) — P;O(io) +1 75 P,'O(io)

Contradiction!

33

LOOP + TM

Claim 2: ¥ ¢ LOOP

Proof: We assume, in order to derive a contradiction, that WV € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).

o V(jp) = P,'O(io) +1# Pio(iO)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.

34

LOOP + TM

Claim 2: ¥ ¢ LOOP

Proof: We assume, in order to derive a contradiction, that ¥V € LOORP, i.e.

there exists a LOOP program P;; which computes V.
Then:

e The output of P;, on input iy is Pj,(ip).

o W(ig) = Pj,(io) +1+# Pj,(io)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

Why?

35

LOOP + TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that ¥V € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of Pj, on input iy is Pj,(ip).
o W(ig) = Pj,(io) +1+# Pi,(io)
Contradiction!
Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.

The proof relies on the fact that W is total (otherwise P (ip) + 1 could be
undefined).

36

Summary

We showed that:

s

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP"t —
e LOOP # TM

GOTOPat C TMpart

37

Summary

We showed that:

s

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP"t —
e LOOP # TM

GOTOPat C TMpart

Still to show:

e TM C WHILE
o TMP2rt C WHILEPart

38

Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP"t = GOTOPart C TMPart
e LOOP #£ TM

Still to show:

e TM C WHILE
o TMPt C WHILEP

For proving this, another model of computation will be used:

recursive functions

