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P, NP, PSPACE

Definition

P =
⋃

i≥1 DTIME(ni )

NP =
⋃

i≥1 NTIME(ni )

PSPACE =
⋃

i≥1 DSPACE(ni )
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P, NP, PSPACE

Definition

P =
⋃

i≥1 DTIME(ni )

NP =
⋃

i≥1 NTIME(ni )

PSPACE =
⋃

i≥1 DSPACE(ni )

Lemma NP ⊆
⋃

i≥1 DTIME(2O(nd ))

Proof: Follows from the fact that if L is accepted by a f (n)-time bounded

NTM then L is accepted by an 2O(f (n))-time bounded DTM, hence for every

d ≥ 1 we have:

NTIME(nd ) ⊆ DTIME(2O(nd ))
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P, NP, PSPACE

P =
⋃

i≥1 DTIME(ni )

NP =
⋃

i≥1 NTIME(ni )

PSPACE =
⋃

i≥1 DSPACE(ni )

NP ⊆
⋃

i≥1 DTIME(2O(nd ))

Intuition

• Problems in P can be solved efficiently; those in NP can be solved in

exponential time

• PSPACE is a very large class, much larger that P and NP.

5



Complexity classes for functions

Definition

A function f : N → N is in P if there exists a DTM M and a polynomial

p(n) such that for every n the value f (n) can be computed by M in at

most p(length(n)) steps.

Here length(n) = log(n): we need log(n) symbols to represent (binary) the

number n.

The other complexity classes for functions are defined in an analogous way.
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Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?
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Relationships between complexity classes

Question:

Which are the links between the complexity classes P, NP and PSPACE?

P ⊆ NP ⊆ PSPACE
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Complexity classes

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

We need one problem we can start with! (for NP: SAT)
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Complexity classes

Can we find in NP problems which are the most difficult ones in NP?
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Complexity classes

Can we find in NP problems which are the most difficult ones in NP?

Answer

There are various ways of defining “the most difficult problem”.

They depend on the notion of reducibility which we use.

For a given notion of reducibility the answer is YES.

Such problems are called complete in the complexity class with respect to

the notion of reducibility used.
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Reduction

Definition (Polynomial time reducibility)

Let L1, L2 be languages.

L2 is polynomial time reducible to L1 (notation: L2 �pol L1)

if there exists a polynomial time bounded DTM, which for every input w

computes an output f (w) such that

w ∈ L2 if and only if f (w) ∈ L1
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Reduction

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a po-

lynomial time reduction.

Proof: Assume L1 ∈ P. Then there exists k ≥ 1 such that L1 is accepted by nk -time

bounded DTM M1.

Since L2 �pol L1 there exists a polynomial time bounded DTM Mf , which for every

input w computes an output f (w) such that w ∈ L2 if and only if f (w) ∈ L1.

Let M2 = Mf M1. Clearly, M2 accepts L2. We have to show that M2 is polynomial

time bounded. w 7→ Mf computes f (w) (pol.size) 7→ M1 decides if f (w) ∈ L1

(polynomially many steps)
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NP

Theorem (Characterisation of NP)

A language L is in NP if and only if there exists a language L′ in P and

a k ≥ 0 such that for all w ∈ Σ∗:

w ∈ L iff there exists c : 〈w , c〉 ∈ L′ and |c| < |w |k

c is also called witness or certificate for w in L.

A DTM which accepts the language L′ is called verifier.

Important

A decision procedure is in NP iff every “Yes” instance has a short witness

(i.e. its length is polynomial in the length of the input)

which can be verified in polynomial time.
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Complete and hard problems

Definition (NP-complete, NP-hard)

• A language L is NP-hard (NP-difficult) if every language L′ in NP is reducible

in polynomial time to L.

• A language L is NP-complete if:

– L ∈ NP

– L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

• A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

• A language L is PSPACE-complete if:

– L ∈ PSPACE

– L is PSPACE-hard
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Complete and hard problems

Remarks:

• If we can prove that at least one NP-hard problem is in P then P = NP

• If P 6= NP then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

L′ = Lsat = {w | w is a satisfiable formula of propositional logic}
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Stephen Cook

Stephen Arthur Cook (born 1939)

• Major contributions to complexity theory.

Considered one of the forefathers of computational

complexity theory.

• 1971 ‘The Complexity of Theorem Proving Procedures’

Formalized the notions of polynomial-time reduction and

NP-completeness, and proved the existence of an NP-complete

problem by showing that the Boolean satisfiability problem

(SAT) is NP-complete.

• Currently University Professor at the University of Toronto

• 1982: Turing award for his contributions to complexity theory.

17



Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.
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Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea)

To show: (1) SAT ∈ NP

(2) for all L ∈ NP, L �pol SAT
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Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea)

To show: (1) SAT ∈ NP

(2) for all L ∈ NP, L �pol SAT

(1) Construct a k-tape NTM M which can accept SAT in polynomial time:

w ∈ Σ∗
PL 7→ M does not halt if w 6∈ SAT

M finds in polynomial time a satisfying assignment

(a) scan w and see if it a well-formed formula; collect atoms 7→ O(|w |2)

(b) if not well-formed: inf.loop; if well-formed M guesses a satisfying assignment 7→ O(|w |)

(c) check whether w true under the assignment 7→ O(p(|w |))

(d) if false: inf.loop; otherwise halt.

“guess (satisfying) assignment A; check in polynomial time that formula true under A”
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Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

Proof (Idea) (2) We show that for all L ∈ NP, L �pol SAT

• We show that we can simulate the way a NTM works using propositional logic.

• Let L ∈ NP. There exists a p-time bounded NTM which accepts L. (Assume

w.l.o.g. that M has only one tape and does not hang.)

For M and w we define a propositional logic language and a formula TM,w such

that

M accepts w iff TM,w is satisfiable.

• We show that the map f with f (w) = TM,w has polynomial complexity.
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Closure of complexity classes

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing

machines are closed under complement.

Proof: If a language L is in such a class then also its complement is

(run the machine for L and revert the output)
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Closure of complexity classes

Is NP closed under complement?
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Closure of complexity classes

Is NP closed under complement?

Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

co-NP = {L | L ∈ NP}
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Relationships between complexity classes

It is not yet known whether the following relationships hold:

P
?
= NP

NP
?
= co-NP

P
?
= PSPACE

NP
?
= PSPACE
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)

2. Does a graph contain a clique of size k? (Clique of size k)

3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)

4. Can a graph be colored with three colors? (3-colorability)

5. Has a set of integers a subset with sum x? (subset sum)

6. Rucksack problem (knapsack)

7. Multiprocessor scheduling
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)

2. Does a graph contain a clique of size k? (Clique of size k)

3. Is a (un)directed graph hamiltonian? (Hamiltonian circle)

4. Can a graph be colored with three colors? (3-colorability)

5. Has a set of integers a subset with sum x? (subset sum)

6. Rucksack problem (knapsack)

7. Multiprocessor scheduling
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Examples of NP-complete problems

Definition (CNF, DNF, k-CNF, k-DNF)

DNF: A formula is in DNF if it has the form

(L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm )

CNF: A formula is in CNF if it has the form

(L11 ∨ · · · ∨ L1n1) ∧ · · · ∧ (Lm1 ∨ · · · ∨ Lmnm )

k-DNF: A formula is in k-DNF if it is in DNF and

all its conjunctions have k literals

k-CNF: A formula is in k-CNF if it is in CNF and

all its disjunctions have k literals
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Examples of NP-complete problems

SAT = {w | w is a satisfiable formula of propositional logic}

CNF-SAT = {w | w is a satisfiable formula of propositional logic in CNF}

k-CNF-SAT = {w | w is a satisfiable formula of propositional logic in k-CNF}
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Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3
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Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3

Proof: (1) SAT is NP-complete by Cook’s theorem.

CNF-SAT and k-CNF-SAT are clearly in NP.

(3) We show that 3-CNF-SAT is NP-hard. For this, we construct a

polynomial reduction of SAT to 3-CNF-SAT.
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Examples of NP-complete problems

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.

Let F be a propositional formula of length n

Step 1 Move negation inwards (compute the negation normal form) 7→ O(n)

Step 2 Fully bracket the formula 7→ O(n)

P ∧ Q ∧ R 7→ (P ∧ Q) ∧ R

Step 3 Starting from inside out replace subformula Q o R with a

new propositional variable PQ o R and add the formula

PQ o R → (Q o R) and (Q o R) → PQ o R (o ∈ {∨,∧}) 7→ O(p(n))

Step 4 Write all formulae above as clauses 7→ Rename(F ) 7→ O(n)

Let f : Σ∗ → Σ∗ be defined by:

f (F ) = PF ∧ Rename(F ) if F is a well-formed formula

and f (w) = ⊥ otherwise. Then:

F ∈ SAT iff F is a satisfiable formula in prop. logic iff PF ∧ Rename(F ) is satisfiable

iff f (F ) ∈ 3-CNF-SAT
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Example

Let F be the following formula:

[(Q ∧ ¬P ∧ ¬(¬(¬Q ∨ ¬R))) ∨ (Q ∧ ¬P ∧ ¬(Q ∧ ¬P))] ∧ (P ∨ R).

Step 1: After moving negations inwards we obtain the formula:

F1 = [(Q ∧ ¬P ∧ (¬Q ∨ ¬R)) ∨ (Q ∧ ¬P ∧ (¬Q ∨ P))] ∧ (P ∨ R)

Step 2: After fully bracketing the formula we obtain:

F2 = [((Q ∧ ¬P) ∧ (¬Q ∨ ¬R)) ∨ ((Q ∧ ¬P) ∧ (¬Q ∨ P)] ∧ (P ∨ R)

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.
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Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF ↔ (P8 ∧ P5) ∧ (P1 ↔ (Q ∧ ¬P))

∧ (P8 ↔ (P6 ∨ P7)) ∧ (P2 ↔ (¬Q ∨ ¬R))

∧ (P6 ↔ (P1 ∧ P2)) ∧ (P4 ↔ (¬Q ∨ P))

∧ (P7 ↔ (P1 ∧ P4)) ∧ (P5 ↔ (P ∨ R))

can further exploit polarity
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Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))
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Example

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))

Step 4: Compute the CNF (at most 3 literals per clause)

PF ∧ (¬PF ∨ P8) ∧ (¬PF ∨ P5) ∧ (¬P1 ∨ Q) ∧ (¬P1 ∨ ¬P)

∧ (¬P8 ∨ P6 ∨ P7) ∧ (¬P2 ∨ ¬Q ∨ ¬R)

∧ (¬P6 ∨ P1) ∧ (¬P6 ∨ P2) ∧ (¬P4 ∨ ¬Q ∨ P)

∧ (¬P7 ∨ P1) ∧ (¬P7 ∨ P4) ∧ (¬P5 ∨ P ∨ R)
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Examples of NP-complete problems

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete

Polynomial reduction from 3-CNF-SAT to CNF-SAT:

f (F ) = F for every formula in 3-CNF and ⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F ) = F ∈ CNF-SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF-SAT, k > 3

For every formula in 3-CNF:

f (F ) = F ′ (where F ′ is obtained from F by replacing a literal L with L ∨ · · · ∨ L
︸ ︷︷ ︸

k−2 times

).

f (w) =⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F ) = F ′ ∈ k-CNF-SAT (because F ′ ≡ F )
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Examples of problems in P

Theorem

The following problems are in P:

(1) DNF

(2) k-DNF for all k

(3) 2-CNF

(1) Let F = (L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm ) be a formula in DNF.

F is satisfiable iff for some i : (Li1 ∧ · · · ∧ Lin1) is satisfiable. A conjunction

of literals is satisfiable iff it does not contain complementary literals.

(2) follows from (1)

(3) Finite set of 2-CNF formulae over a finite set of propositional variables.

Resolution 7→ at most quadratically many inferences needed.
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling
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Examples of NP-complete problems

Definition

A clique in a graph G is a complete subgraph of G .

Clique = {(G , k) | G is an undirected graph which has a clique of size k}
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Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in NP:

We can construct for instance an NTM which accepts Clique.

• M builds a set V ′ of nodes (subset of the nodes of G) by choosing k

nodes of G (we say that M “guesses” V ′).

• M checks for all nodes in V ′ if there are nodes to all other nodes.

(this can be done in polynomial time)

“guess a subgraph with k vertices; check in polynomial time that it is a clique”

41



Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that

3-CNF-SAT �pol Clique.

Let G be the set of all undirected graphs. We want to construct a map f

(DTM computable in polynomial time) which associates with every formula

F in 3-CNF a pair f (F ) = (GF , kF ) ∈ G × N such that

F ∈ 3-CNF-SAT iff GF has a clique of size kF .

F ∈ 3-CNF ⇒ F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3 )

F satisfiable iff there exists an assignment A such that in every clause in F

at least one literal is true and it is impossible that P and ¬P are true at the

same time.
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Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (ctd.) Let kF := m (the number of clauses). We construct GF as follows:

• Vertices: all literals in F .

• Edges: We have an edge between two literals if they (i) can become true in the

same assignment and (ii) belong to different clauses.

Then:

(1) f (F ) is computable in polynomial time.

(2) The following are equivalent:

(a) GF has a clique of size kF .

(b) There exists a set of nodes {L1
i1
, . . . , Lm

im
} in GF which does not contain

complementary literals.

(c) There exists an assignment which makes F true.

(d) F is satisfiable.
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF-SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling
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Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

45



Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

• n objects with weights a1, . . . , an

• a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects

with total weight b.

Rucksack = {(b, a1, . . . , an) ∈ Nn+1 |

E

I ⊆ {1, . . . , n} s.t.
∑

i∈I ai = b}
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Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether
∑

i∈I ai = b
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Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether
∑

i∈I ai = b

(2) Rucksack is NP-hard: We show that 3-CNF-SAT ≺pol Rucksack.

Construct f : 3-CNF → N
∗ as follows.

Consider a 3-CNF formula F = (L1
1 ∨ L1

2 ∨ L1
3) ∧ · · · ∧ (Lm

1 ∨ Lm
2 ∨ Lm

3 )

f (F ) = (b, a1, . . . , an) where:

(i) ai encodes which atom occurs in which clause as follows:

pi positive occurrences; ni negative occurrences (numbers with n + m positions)

– first m digits of pi : pij how often i-th atom occurs positively in j-th clause

– first m digits of ni : nij how often i-th atom occurs negatively in j-th clause

– last n digits of pi , ni : pij , nij which atom is referred by pi

pi , ni contain 1 at position m + i and 0 otherwise.
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Example

Let the set Prop of propositional variables consist of {x1, x2, x3, x4, x5}.

F : (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x1 ∨ x4)

p1 = 100 10000 n1 = 001 10000

p2 = 020 01000 n2 = 100 01000

p3 = 000 00100 n3 = 001 00100

p4 = 101 00010 n4 = 000 00010

p5 = 000 00001 n5 = 010 00001

Satisfying assignment: A(x1)=A(x2)=A(x5)=1 and A(x3)=A(x4)=0.

p1 + p2 + p5 + n3 + n4 = 121
︸︷︷︸

all digits ≤3
because 3 lit./clause

11111
︸ ︷︷ ︸

all 1
all atoms considered
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Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional

variable xi mapped to 0 the number ni and for every propositional variable xi mapped

to 1 the number pi .

The sum of these numbers is b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n times

with bi ≤ 3,

so b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n

< 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

Let b := 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

. We choose {a1, . . . , ak} = {p1, . . . , pn} ∪ {n1, . . . , nn} ∪ C .

The role of the numbers in C = {c1, . . . , cm, d1, . . . , dm} is to make the sum of the

ai s equal to b: cij = 1 iff i = j ; dij = 2 iff i = j (they are zero otherwise).

f (F ) ∈ Rucksack iff a subset I of {a1, . . . , ak} adds up to b

iff a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} adds up to b1 . . . bm1 . . . 1

iff for a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} there exists an assignment

A with A(Pi ) = 1(resp. 0) iff pi (resp. ni ) occurs in I iff F satisfiable
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Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling
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Examples of NP-complete problems

Definition (k-colorability) A undirected graph is k-colorable if every node

can be colored with one of k colors such that nodes connected by an edge

have different colors.

LColork : the language consisting of all undirected graphs

which are colorable with at most k colors.
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Examples of NP-complete problems

COLOR = {(G , k) | G undirected graph that can be colored with k colors}

COLOR is NP complete

Proof: Exercise. Hint:

(1) Prove that the problen is in NP.

(2) Let F = C1 ∧ · · · ∧ Ck in 3-CNF containing propositional variables {x1, . . . , xm}.

Let G = (V , E) be an undirected graph, that is defined as follows:

V ={C1, . . . ,Ck} ∪ {x1, . . . , xm} ∪ {x1, . . . , xm} ∪ {y1, . . . , ym}

E ={(xi , xi ), (xi , xi ) | i ∈ {1, ...,m}} ∪ {(yi , yj ) | i 6= j}∪

{(yi , xj ), (xj , yi ) | i 6= j} ∪ {(yi , xj ), (xj , yi ) | i 6= j}∪

{(Ci , xj ), (xj ,Ci ) | xj not in Ci} ∪ {(Ci , xj ), (xj ,Ci ) | xj not in Ci}

Use G to prove 3-CNF-SAT �pol k-colorability.
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Examples of NP-complete problems

COLOR = {(G , k) | G undirected graph that can be colored with k colors}

COLOR is NP-complete

Detailed proof: Available online from the website

(file: k-coloring-np-complete-proof.pdf)

3-colorability = {G | G undirected graph that can be colored with 3 colors}

3-colorability is NP-complete

(for a proof see e.g. https://cgi.csc.liv.ac.uk/ igor/COMP309/3CP.pdf)
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Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling
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Examples of NP-complete problems

Definition (Hamiltonian-path)

Path along the edges of a graph which visits every node exactly once.
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Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and

is a cycle.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle
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Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and

is a cycle.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle

LHam,dir : the language consisting of all directed graphs

which contain a Hamiltonian cycle

NP-completeness: again reduction from 3-CNF-SAT.
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Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian

cycle is NP-complete.

Proof. (1) The problem is in NP: Guess a permutation of the nodes; check

that they form a Hamiltonian cycle (in polynomial time).

(2) The problem is NP-hard. Reduction from 3-CNF-SAT.

F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lk1 ∨ Lk2 ∨ Lk3)

Construct f (F ) = G such that G contains a Hamiltonian cycle iff F

satisfiable.

The details can be found in Erk & Priese, “Theoretische Informatik”,

p.466-471.

59



Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

60



Examples of NP-complete problems

Definition (Multiprocessor scheduling problem)

A scheduling problem consists of:

• n processes with durations t1, . . . , tn

• m processors

• a maximal duration (deadline) D

The scheduling problem has a solution if there exists a distribution of processes

on the processors such that all processes end before the deadline D.

Lschedule : the language consisting of all solvable

scheduling problems
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Other complexity classes
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Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic}

Theorem. Ltautologies is in co-NP.

Proof. The complement of Ltautologies is the set of formulae whose negation

is satisfiable, thus in NP.

It is not known whether NP = co-NP
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PSPACE

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: – L ∈ PSPACE

– L is PSPACE-hard
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Quantified Boolean Formulae

Syntax: Extend the syntax of propositional logic by allowing quantification

over propositional variables.

Semantics:

(

A

P)F 7→ F [P 7→ 1] ∧ F [P 7→ 0]

(
E

P)F 7→ F [P 7→ 1] ∨ F [P 7→ 0]
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PSPACE

A fundamental PSPACE problem was identified by Stockmeyer and Meyer

in 1973.

Quantified Boolean Formulas (QBF)

Given: A well-formed quantified Boolean formula

F = (Q1P1) . . . (QnPn)G(P1, . . . ,Pn)

where G is a Boolean expression containing the propositional variables

P1, . . . ,Pn and Qi is

E

or

A

.

Question: Is F true?

(Does it evaluate to 1 if we use the evaluation rules above?)

66



PSPACE

Example

F propositional formula with propositional variables P1, . . . ,Pn

F is satisfiable iff

E

P1 . . .

E

PnF is true.
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PSPACE

Example

F propositional formula with propositional variables P1, . . . ,Pn

F is satisfiable iff

E

P1 . . .

E

PnF is true.

If we have alternations of quantifiers it is more difficult to check whether a

QBF is true.
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PSPACE

Theorem QBF is PSPACE complete

Proof (Idea only)

(1) QBF is in PSPACE: we can try all possible assignments of truth values

one at a time and reusing the space (2n time but polynomial space).

(2) QBF is PSPACE complete. We can show that every language L′ in

PSPACE can be polymomially reduced to QBF using an idea similar to

that used in Cook’s theorem (we simulate a polynomial space bounded

computation and not a polynomial time bounded computation).
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The structure of PSPACE
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NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.
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NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a language L′ ∈ P and a k ≥ 0 s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |w | and s.t. 〈w , c〉 ∈ L′

(can use c to check in PTIME that w ∈ L)
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NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a language L′ ∈ P and a k ≥ 0 s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |w | and s.t. 〈w , c〉 ∈ L′

(can use c to check in PTIME that w ∈ L)

L ∈ co-NP iff the complement of L is in NP (with test language L′)

w ∈ L iff

A

c of lenght polynomial in |w |, 〈w , c〉 6∈ L′

(can use c to check in PTIME that w ∈ L)
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NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic} is in co-NP.

Informally

L ∈ NP iff there exists a PTIME deterministic verifyer M s.t. for all w ∈ Σ∗:

w ∈ L iff

E

c (witness) of lenght polynomial in |w | and s.t. M(w , c) = 1

L ∈ co-NP iff the complement of L is in NP (with test language L′)

w ∈ L iff

A

c of lenght polynomial in |w |, M(w , c) = 1.
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The structure of PSPACE

... Beyond NP
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The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t. M(w , c) = 1.

co-NP

w ∈ L iff

A

c of lenght polynomial in |w |, s.t. M(w , c) = 1.

Σp
2

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t.

A

d of lenght polynomial in |w |, M(w , c, d) = 1
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The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t. M(w , c) = 1.

co-NP

w ∈ L iff

A

c of lenght polynomial in |w |, s.t. M(w , c) = 1.

Σp
2

w ∈ L iff

E

c (witness) of lenght polynomial in |w | s.t.

A

d of lenght polynomial in |w |, M(w , c, d) = 1

Example: QBF with one quantifier alternation

Σ2SAT = {F =

E

P1 . . .Pn

A

Q1 . . .QmF (P1, . . . ,Pn,Q1, . . .Qn) | F true}
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The structure of PSPACE

Remarks

• in fact, Σ2SAT is complete for Σp
2

• more alternations lead to a whole hierarchy

• all of it is contained in PSPACE
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The structure of PSPACE

For i ≥ 1,a language L is in Σp
i
if there exists a PTIME deterministic

verifyer M such that:

w ∈ L iff

E

u1 of lenght polynomial in |w |

A

u2 of lenght polynomial in |w |

. . .

Qiui of lenght polynomial in |w |

such that M(w , u1, . . . , ui ) = 1

where Qi is

E

if i is odd and

A

otherwise.

The polynomial hierarchy is the set PH =
⋃

i≥1 Σ
p
i

Πp
i
= co-Σp

i
= {L | L ∈ Σp

i
}
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The structure of PSPACE

Formal definition (main ideas)

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.
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The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.
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The structure of PSPACE

The polynomial hierarchy (Informally)

PY : the class of languages decidable in polynomial time by a

Turing machine augmented by an oracle

for some complete problem in class Y .

NPY : the class of languages decidable in polynomial time by a

non-deterministic Turing machine augmented by an oracle

for some complete problem in class Y .

AB : the class of languages decidable by an algorithm in class A

with an oracle for some complete problem in class B.
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The structure of PSPACE

The polynomial hierarchy (Informally)

AB : the class of languages decidable by an algorithm in class A

with an oracle for some complete problem in class B.

Σp
0 = Πp

0 = ∆p
0 = P.

∆p
k+1 = PΣ

p
k

Σp
k+1 = NPΣ

p
k

Πp
k+1 = co-NPΣ

p
k

Πp
1 = co-NPP = co-NP; Σp

1 = NPP = NP; ∆p
1 = PP = P.

∆p
2 = PNP ; Σp

2 = NPNP
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The structure of PSPACE

PSPACE
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The structure of PSPACE

It is an open problem whether there is an i such that Σp
i
= Σp

i+1.

This would imply that Σp
i
= PH: the hierarchy collapses to the i-th level.

Most researchers believe that the hierarchy does not collapse.

If NP = P then PH = P, i.e. the hierarchy collapses to P.
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The structure of PSPACE

A complete problem for ΣP
k
is satisfiability for quantified Boolean formulas

with k alternations of quantifiers which start with an existential quantifier

sequence (abbreviated QBFk or QSATk).

(The variant which starts with

A

is complete for ΠP
k
).
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Beyond PSPACE

EXPTIME, NEXPTIME

DEXPTIME, NDEXPTIME

EXPSPACE, ....
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Discussion

• In practical applications, for having efficient algorithms polynomial

solvability is very important; exponential complexity inacceptable.

• Better hardware is no solution for bad complexity

Question which have not been clarified yet:

• Does parallelism/non-determinism make problems tractable?

• Any relationship between space complexity and run time behaviour?
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Other directions in complexity

Parameterized complexity

Pseudopolynomial problems

Approximative and probabilistic algorithms
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Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE

complete)

• Undecidable: validity of formulae in FOL; termination, correctness of

programs

• NP-complete: SAT, Scheduling

• PSPACE complete: games, market analyzers
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Motivation

Possible approaches:

• Identify which part of the input is cause of high complexity

• Heuristic solutions:

– use knowledge about the structure of problems in a specific

application area;

– renounce to general solution in favor of a good “average case” in

the specific area of applications.

• Approximation: approximative solution

– Renounce to optimal solution in favor of shorter run times.

• Probabilistic approaches:

– Find correct solution with high probability.

– Renounce to sure correctness in favor of shorter run times.
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(I) Parameterized Complexity

Parameterized complexity is a branch of computational complexity theory

that focuses on classifying computational problems according to their

inherent difficulty with respect to multiple parameters of the input.

This allows the classification of NP-hard problems on a finer scale.

7→ Fixed parameter tractability.

Example: SAT

Assume that the number of propositional variables is a parameter.

A given formula of size m with k variables can be checked by brute force in

time O(2km)

For a fixed number of variables, the complexity of the problem is linear in

the length of the input formula.
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(I) Parameterized Complexity

Fixed parameter tractability parameter specified: Input of the form (w , k)

L is fixed-parameter tractable if the question (w , k) ∈ L? can can be decided

in running time f (k) · p(|w |), where f is an arbitrary function depending

only on k, and p is a polynomial.

An example of a problem that is thought not to be fixed parameter tractable

is graph coloring parameterised by the number of colors.

It is known that 3-coloring is NP-hard, and an algorithm for graph

k-colouring in time f (k)p(n) for k = 3 would run in polynomial time in the

size of the input.

Thus, if graph coloring parameterised by the number of colors were fixed

parameter tractable, then P = NP.
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(II) Approximation

Many NP-hard problems have optimization variants

• Example: Clique: Find a possible greatest clique in a graph

... but not all NP-difficult problems can be solved approximatively in

polynomial time:

• Example: Clique: Not possible to find a good polynomial approximation

(unless P = NP)
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(III) Probabilistic algorithms

Idea

• Undeterministic, random computation

• Goal: false decision possible but not probable

• The probability of making a mistake reduced by repeating computations

• 2−100 below the probability of hardware errors.
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Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique

NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph G = (V ,E)

Repeat the following k times:

• Choose randomly v1 ∈ V and {v2, v3} ∈ E

• Test if v1, v2, v3 build a clique.

Error probability:

k = (|E | · |V |)/3: Error probability < 0.5

k = 100(|E | · |V |)/3: Error probability < 2−100
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Overview

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models
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