Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 3)

1.02.2023 and 8.02.2023

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Until now

- P, NP, PSPACE; Relationships between these classes

Open problem: Is $\mathrm{P}=\mathrm{NP}$? (Millenium Problem)
Closure of complexity classes:
P, PSPACE closed under complement
Open problem: NP closed under complement? mapsto co-NP

- Complexity classes for functions
- Polynomial time reducibility
- NP-complete and NP-hard languages; SAT is NP-complete

Examples of NP-complete problems

Until now

- PSPACE-complete and PSPACE-hard languages

Quantified Boolean Formulae

Theorem QBF is PSPACE complete

Proof (Idea only)
(1) QBF is in PSPACE: we can try all possible assignments of truth values one at a time and reusing the space (2^{n} time but polynomial space).
(2) QBF is PSPACE complete. We can show that every language L^{\prime} in PSPACE can be polymomially reduced to QBF using an idea similar to that used in Cook's theorem (we simulate a polynomial space bounded computation and not a polynomial time bounded computation).

The structure of PSPACE

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$ is in co-NP.

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$ is in co-NP.

Informally

$L \in N P$ iff there exists a language $L^{\prime} \in P$ and a $k \geq 0$ s.t. for all $w \in \Sigma^{*}$:
$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ and s.t. $\langle w, c\rangle \in L^{\prime}$ (can use c to check in PTIME that $w \in L$)

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$ is in co-NP.

Informally

$L \in N P$ iff there exists a language $L^{\prime} \in \mathrm{P}$ and a $k \geq 0$ s.t. for all $w \in \Sigma^{*}$:
$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ and s.t. $\langle w, c\rangle \in L^{\prime}$ (can use c to check in PTIME that $w \in L$)
$L \in$ co-NP iff the complement of L is in NP (with test language L^{\prime})
$w \in L$ iff $\forall c$ of lenght polynomial in $|w|,\langle w, c\rangle \notin L^{\prime}$ (can use c to check in PTIME that $w \in L$)

NP vs. Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$ is in co-NP.

Informally

$L \in$ NP iff there exists a PTIME deterministic verifyer M s.t. for all $w \in \Sigma^{*}$:
$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ and s.t. $M(w, c)=1$
$L \in$ co-NP iff the complement of L is in NP (with test language L^{\prime})
$w \in L$ iff $\forall c$ of lenght polynomial in $|w|, M(w, c)=1$.

The structure of PSPACE

... Beyond NP

The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ s.t. $M(w, c)=1$.
co-NP
$w \in L$ iff $\forall c$ of lenght polynomial in $|w|$, s.t. $M(w, c)=1$.
Σ_{2}^{p}
$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ s.t. $\forall d$ of lenght polynomial in $|w|, M(w, c, d)=1$

The structure of PSPACE

Idea: (M PTIME deterministic verifyer)

NP

$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ s.t. $M(w, c)=1$.
co-NP
$w \in L$ iff $\forall c$ of lenght polynomial in $|w|$, s.t. $M(w, c)=1$.
Σ_{2}^{p}
$w \in L$ iff $\exists c$ (witness) of lenght polynomial in $|w|$ s.t. $\forall d$ of lenght polynomial in $|w|, M(w, c, d)=1$

Example: QBF with one quantifier alternation
$\Sigma_{2} S A T=\left\{F=\exists P_{1} \ldots P_{n} \forall Q_{1} \ldots Q_{m} \bar{F}\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots Q_{n}\right) \mid F\right.$ true $\}$

The structure of PSPACE

Remarks

- in fact, $\Sigma_{2} S A T$ is complete for Σ_{2}^{p}
- more alternations lead to a whole hierarchy
- all of it is contained in PSPACE

The structure of PSPACE

For $i \geq 1$, a language L is in Σ_{i}^{p} if there exists a PTIME deterministic verifyer M such that:

$$
\begin{aligned}
w \in L \quad \text { iff } & \exists u_{1} \text { of lenght polynomial in }|w| \\
& \forall u_{2} \text { of lenght polynomial in }|w|
\end{aligned}
$$

$Q_{i} u_{i}$ of lenght polynomial in $|w|$
such that $M\left(w, u_{1}, \ldots, u_{i}\right)=1$
where Q_{i} is \exists if i is odd and \forall otherwise.

The polynomial hierarchy is the set $P H=\bigcup_{i \geq 1} \Sigma_{i}^{p}$
$\Pi_{i}^{p}=\operatorname{co-} \Sigma_{i}^{p}=\left\{\bar{L} \mid L \in \Sigma_{i}^{p}\right\}$

The structure of PSPACE

Formal definition (main ideas)
Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.

The structure of PSPACE

The polynomial hierarchy (Informally)
P^{Y} : the class of languages decidable in polynomial time by a Turing machine augmented by an oracle for some complete problem in class Y.
$N P^{Y}$: the class of languages decidable in polynomial time by a non-deterministic Turing machine augmented by an oracle for some complete problem in class Y.
A^{B} : the class of languages decidable by an algorithm in class A with an oracle for some complete problem in class B.

The structure of PSPACE

The polynomial hierarchy (Informally)
A^{B} : the class of languages decidable by algorithm in class A with an oracle for some complete problem in class B.

$$
\begin{aligned}
& \Sigma_{0}^{p}=\Pi_{0}^{p}=\Delta_{0}^{p}=P . \\
& \Delta_{k+1}^{p}=P^{\Sigma_{k}^{p}} \\
& \Sigma_{k+1}^{p}=N P^{\Sigma_{k}^{p}} \\
& \Pi_{k+1}^{p}=\operatorname{co}-N P^{\Sigma_{k}^{p}}
\end{aligned}
$$

$\Pi_{1}^{p}=\mathrm{co}-N P^{P}=\mathrm{co}-\mathrm{NP} ; \Sigma_{1}^{p}=N P^{P}=N P ; \Delta_{1}^{p}=P^{P}=P$.
$\Delta_{2}^{p}=P^{N P} ; \Sigma_{2}^{p}=N P^{N P}$

The structure of PSPACE
PSPACE

The structure of PSPACE

It is an open problem whether there is an i such that $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$.
This would imply that $\Sigma_{i}^{p}=P H$: the hierarchy collapses to the i-th level.

Most researchers believe that the hierarchy does not collapse.

If $N P=P$ then $P H=P$, i.e. the hierarchy collapses to P.

The structure of PSPACE

A complete problem for Σ_{k}^{P} is satisfiability for quantified Boolean formulas with k alternations of quantifiers which start with an existential quantifier sequence (abbreviated $Q B F_{k}$ or $Q S A T_{k}$).
(The variant which starts with \forall is complete for Π_{k}^{P}).

Beyond PSPACE

EXPTIME, NEXPTIME
DEXPTIME, NDEXPTIME

EXPSPACE,

Discussion

- In practical applications, for having efficient algorithms polynomial solvability is very important; exponential complexity inacceptable.
- Better hardware is no solution for bad complexity

Question which have not been clarified yet:

- Does parallelism/non-determinism make problems tractable?
- Any relationship between space complexity and run time behaviour?

Other directions in complexity

Parameterized complexity
Pseudopolynomial problems
Approximative and probabilistic algorithms

Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE complete)

- Undecidable: validity of formulae in FOL; termination, correctness of programs
- NP-complete: SAT, Scheduling
- PSPACE complete: games, market analyzers

Motivation

Possible approaches:

- Identify which part of the input is cause of high complexity
- Heuristic solutions:
- use knowledge about the structure of problems in a specific application area;
- renounce to general solution in favor of a good "average case" in the specific area of applications.
- Approximation: approximative solution
- Renounce to optimal solution in favor of shorter run times.
- Probabilistic approaches:
- Find correct solution with high probability.
- Renounce to sure correctness in favor of shorter run times.

(I) Parameterized Complexity

Parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input.

This allows the classification of NP-hard problems on a finer scale.
\mapsto Fixed parameter tractability.

Example: SAT

Assume that the number of propositional variables is a parameter.
A given formula of size m with k variables can be checked by brute force in time $O\left(2^{k} m\right)$

For a fixed number of variables, the complexity of the problem is linear in the length of the input formula.

(I) Parameterized Complexity

Fixed parameter tractability parameter specified: Input of the form (w, k) L is fixed-parameter tractable if the question $(w, k) \in L$? can can be decided in running time $f(k) \cdot p(|w|)$, where f is an arbitrary function depending only on k, and p is a polynomial.

An example of a problem that is thought not to be fixed parameter tractable is graph coloring parameterised by the number of colors.

It is known that 3-coloring is NP-hard, and an algorithm for graph k-colouring in time $f(k) p(n)$ for $k=3$ would run in polynomial time in the size of the input.

Thus, if graph coloring parameterised by the number of colors were fixed parameter tractable, then $P=N P$.

(II) Approximation

Many NP-hard problems have optimization variants

- Example: Clique: Find a possible greatest clique in a graph
... but not all NP-difficult problems can be solved approximatively in polynomial time:
- Example: Clique: Not possible to find a good polynomial approximation (unless $P=N P$)

(III) Probabilistic algorithms

Idea

- Undeterministic, random computation
- Goal: false decision possible but not probable
- The probability of making a mistake reduced by repeating computations
- 2^{-100} below the probability of hardware errors.

Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique
NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph $G=(V, E)$
Repeat the following k times:

- Choose randomly $v_{1} \in V$ and $\left\{v_{2}, v_{3}\right\} \in E$
- Test if v_{1}, v_{2}, v_{3} build a clique.

Error probability:
$k=(|E| \cdot|V|) / 3:$ Error probability <0.5
$k=100(|E| \cdot|V|) / 3:$ Error probability $<2^{-100}$

Overview

- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models

