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Last time

Theorem of Rice:

• All problems about programs (TM) which are non-trivial

(in a certain sense) are undecidable

Identify undecidable problems outside the world of Turing machines

• Validity/Satisfiability in First-Order Logic

Today

The Post Correspondence Problem
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Decidability and Undecidability results

Formal languages

• The Post Correspondence Problem and its consequences
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Post Correspondence Problem

Idea: We consider strings over a finite alphabet Σ.

For example:

Alphabet Σ = {a, b}; non-empty string over Σ: “aaabba”.

Assume that we have n pairs of strings (p1, q1), . . . , (pn, qn).

Post correspondence problem:

Determine whether there is a set of indices i1, . . . , im such that

pi1pi2 . . . pim = qi1qi2 . . . qim .

This can contain repeated indices, miss certain indices, . . .
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Post Correspondence Problem

Assume that we have n pairs of strings (p1, q1), . . . , (pn, qn).

Post correspondence problem:

Determine whether there is a set of indices i1, . . . , im such that

pi1pi2 . . . pim = qi1qi2 . . . qim .

This can contain repeated indices, miss certain indices, . . .

Example: Σ = {a, b, c}

Let P = {(a, ab), (b, ca), (ca, a), (abc, c)}.

p1p2p3p1p4 = a b ca a abc = abcaaabc =

ab ca a ab c = q1q2q3q1q4
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Post Correspondence Problem

Definition

A correspondence system (CS) P is a finite rule set over an alphabet Σ.

P = {(p1, q1), . . . , (pn, qn)} with pi , qi ∈ Σ∗

An index sequence I = i1 . . . im of P is a sequence with 1 ≤ ik ≤ n for all k.

For every index sequence I we denote pI = pi1 . . . pim and qI = qi1 . . . qim .

A partial solution is an index set I such that

pI is a prefix of qI or qI is an prefix of pI .

A solution is an index set I such that pI = qI .

A (partial) solution with given start is a (partial) solution in which the first

index i1 is given.

The Post correspondence problem (PCP) is the question whether a given

correspondence system P has a solution.
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Post Correspondence Problem

Example:

Let P = {(a, ab), (b, ca), (ca, a), (abc, c)}.

• I = 1, 2, 3, 1, 4 is a solution:

pI = p1p2p3p1p4 = a b ca a abc = abcaaabc =

ab ca a ab c = q1q2q3q1q4 = qI

• J = 1, 2, 3 is a partial solution:

pJ = p1p2p3 = abca is a prefix of qJ = q1q2q3 = abcaa

• There are no solutions with given start 2, 3 or 4.
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Plan

We will show that the Post correspondence problem is undecidable.

The proof consists of the following steps:

• We identify two types of “rewrite” systems

Semi-Thue systems (STS) and Post Normal Systems (PNS).

• We show that the TM computable functions are also STS/PNS

computable.

• We define TransG = {(v ,w) | v ⇒∗ w , v ,w ∈ Σ+} and show that

there exist STS/PNS G such that TransG is undecidable.

• We assume (to derive a contradiction) that a version of the Post

correspondence problem is decidable and show that then also TransG

is decidable (which is clearly impossible).
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STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset

R ⊆ Σ∗ × Σ∗. We also write u →R v for (u, v) ∈ R.

R is ε-free if for all (u, v) ∈ R we have u 6= ε and v 6= ε.
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STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset

R ⊆ Σ∗ × Σ∗. We also write u →R v for (u, v) ∈ R.

R is ε-free if for all (u, v) ∈ R we have u 6= ε and v 6= ε.

Semi-Thue System. In a semi-Thue System, a word w is transformed in a

word w ′ by applying one of the rules (u, v) in R.

Definition. A semi-Thue System (STS) is a pair G = (Σ,R) consisting

of an alphabet Σ and a set of rules R. G is ε-free if R is ε-free.

w ⇒G w ′ iff

E

u →R v ,

E

w1,w2 ∈ Σ∗(w = w1uw2 and w ′ = w1vw2)
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Example

Let G be the following semi-Thue system:

G = ({a, b}, {ab → bba, ba → aba})

ababa ⇒ bbaaba ⇒ bbabbaa

ababa ⇒ aababa ⇒ aabbbaa.

The rule application in not deterministic.
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STS and PNS

Definition. A Post Normal System (PNS) is a pair G = (Σ,R) where

Σ is an alphabet and a set of rules R. G is ε-free if R is ε-free.

It differs from a semi-Thue system in the way ⇒G is defined:

w ⇒G w ′ iff

E

u →R v ,

E

w1 ∈ Σ∗(w = uw1 and w ′ = w1v)

Definition. A computation in a STS or a PNS G is a sequence w1, . . . ,wn with

wi ⇒G wi+1 for all i ∈ {1, . . . , n − 1}.

The computation does not continue if there exists no wn+1 with wn ⇒G wn+1.

If there exists n ≥ 1 with w1 ⇒G · · · ⇒G wn we write: w1 ⇒∗

G
wn.
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Example

Let G be the following Post Normal System:

G = ({a, b}, {ab → bba, ba → aba, a → ba})

Then:

ababa ⇒ ababba ⇒ babbaba ⇒ bbabaaba

ababa ⇒ bababa ⇒ babaaba ⇒ baabaaba ⇒ abaabaaba ⇒ . . .

(infinite computation)
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Post Correspondence Problem

Definition. A partial function f : Σ1
∗ → Σ2

∗ is STS computable

(PNS-computable) iff there exists a STS (a PNS) G s.t. for all w ∈ Σ∗

1

•

A

u ∈ Σ∗

2 , [w ] ⇒∗

G
[u〉 iff f (w) = u

• 6

E

v ∈ Σ∗

2 , [w ] ⇒∗

G
[v〉 iff f (w) undefined.

Note: [, ], 〉 are special symbols

F
part
STS

: the family of all (partial) STS computable functions

F
part
PNS

: the family of all (partial) PNS computable functions
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Post Correspondence Problem

Theorem TMpart ⊆ F
part
STS

; TMpart ⊆ F
part
PNS

.

Proof:

Idea: show that we can simulate the way a TM works using a suitable STS.

We then show that we can slightly change the STS and obtain a PNS which

simulates the TM.

From the proof it can be seen that we can simulate any TM using a ε-free

STS and ε-free PNS.

The full proof is rather long and is not presented here.

It can be found on pages 309-311 in the book “Theoretische Informatik”

(3. Auflage) by Erk and Priese.
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Post Correspondence Problem

TransG = {(v ,w) | v ⇒∗

G
w ∧ v ,w ∈ Σ+}

Theorem.

There exists an ε-free STS G such that TransG is undecidable.

There exists an ε-free PNS G such that TransG is undecidable.

Proof.

We can reduce K = {n | Mn halts on input n} to TransG for a certain STS (PNS) G .

Let G be an ε-free STS or PNS which computes the function of the TM

M = MKMdelete

where MK is the TM which accepts K and Mdelete deletes the band after MK

halts (such a TM can easily be constructed because MK = MprepU0; the halting

configurations of the universal TM U0 are of the form hU , #|n#|m#).

Input v : MK halts iff Mv halts on v . If MK halts, Mdelete deletes the tape.
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Post Correspondence Problem

Proof. (ctd.)

Assume TransG decidable. We show how to use G and the decision

procedure for TransG to decide K :

For v = [ | . . . |
︸ ︷︷ ︸

n times

] and w = [ε〉 we have:

(v ,w) ∈ TransG iff (v ⇒∗

G
w)

iff M = MKMdelete halts for input |n with #

iff MK halts for input |n

iff n ∈ K .
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Post Correspondence Problem

Theorem For every ε-free semi-Thue System G and every pair of words

w ′,w ′′ ∈ Σ+ there exists a Post Correspondence System PG ,w′,w′′ such that

PG ,w′,w′′ has a solution with given start iff w ′ ⇒∗

G w ′′.

Proof: Assume that we are given

• G an ε-free STS G = (Σ,R) with

|Σ| = m and R = {u1 → v1, . . . , un → vn} with ui , vi ∈ Σ+

• w ′,w ′′ ∈ Σ+

We construct the correspondence system PG ,w′ ,w′′ = {(pi , qi ) | 1 ≤ i ≤ k} with

k = n + m + 3 over the alphabet ΣX = Σ ∪ X with:

• the first n rules are the rules in R
• the rule n + 1 is (X ,Xw ′X ); the rule n + 2 is (w ′′XX ,X )
• the rules n + 2 + 1, . . . , n + 2 + m are (a, a) for every a ∈ Σ
• the last rule is (X ,X )
• the index for the given start is n + 1.
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X ),

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p4 X = XcaabaX = q4
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X )

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p486 = Xca = XcaabaXca = q486

20



Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X )

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p4862 = Xcaab = XcaabaXcac = q4862
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X ),

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p486269 = XcaabaX = XcaabaXcacaX = q486269
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X )

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p48626986 = XcaabaXca = XcaabaXcacaXca = q48626986
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X )

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p4862698619 = XcaabaXcacaX = XcaabaXcacaXcaabX = q4862698619
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Example

G = (Σ,R) with Σ = {a, b, c} and R = {ca → ab, ab → c, ba → a}.

For the word pair w ′ = caaba,w ′′ = abc we have

w ′ = caaba ⇒2 caca ⇒1 caab ⇒2 cac ⇒1 abc = w ′′

PG ,w′,w′′ = { (ca, ab), (ab, c), (ba, a), (X ,XcaabaX ), (abcXX ,X )

(a, a), (b, b), (c, c), (X ,X )}

We can see that PG ,w′,w′′ has a solution with start n + 1 iff w ′ ⇒∗

G
w ′′

p4862698619 = XcaabaXcacaX = XcaabaXcacaXcaabX = q4862698619

The successive application of rules 2, 1, 2, 1 corresponds to the solution
I = 4, 8, 6, 2, 6, 9, 8, 6, 1, 9, 8, 6, 2, 9, 1, 8, 9, 5

4,4: begin/end; Underlines: rule applications. Remaining numbers: copy symbols such

that rule applications at the desired position. X separates the words in G -derivations.

pI = XcaabaXcacaXcaabXcacXabcXX = qI
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Post Correspondence Problem

Theorem For every ε-free semi-Thue System G and every pair of words

w ′,w ′′ ∈ Σ+ there exists a Post Correspondence System PG ,w′,w′′ such that

PG ,w′,w′′ has a solution with given start iff w ′ ⇒∗

G w ′′.

Proof: Assume that we are given

• G an ε-free STS G = (Σ,R) with

|Σ| = m and R = {u1 → v1, . . . , un → vn} with ui , vi ∈ Σ+

• w ′,w ′′ ∈ Σ+

We construct the correspondence system PG ,w′ ,w′′ = {(pi , qi ) | 1 ≤ i ≤ k} with

k = n + m + 3 over the alphabet ΣX = Σ ∪ X with:

• the first n rules are the rules in R
• the rule n + 1 is (X ,Xw ′X ); the rule n + 2 is (w ′′XX ,X )
• the rules n + 2 + 1, . . . , n + 2 + m are (a, a) for every a ∈ Σ
• the last rule is (X ,X )
• the index for the given start is n + 1.
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Post Correspondence Problem

Proof (ctd.) We show that PG ,w′,w′′ has a solution iff w ′ ⇒∗

G
w ′′.

Occurrences of X 7→ In the solution index n + 2 must occur.

Assume (n+ 1)I ′(n+ 2)I ′′ is a solution in which I ′ does not contain n+ 1,

nor n+2. By careful analysis of the equality p(n+1)I ′(n+2)I ′′ = q(n+1)I ′(n+2)I ′′

we note the following:

(1) no XX in q(n+1)I ′

⇒ p(n+1)I ′(n+2) cannot be a strict prefix of q(n+1)I ′(n+2).

(2) p(n+1)I ′(n+2) and q(n+1)I ′(n+2) contain the same number of X symbols;

p(n+1)I ′ contains fewer X symbols than q(n+1)I ′

⇒ q(n+1)I ′(n+2) cannot be a strict prefix of p(n+1)I ′(n+2).

From (1) and (2) it follows that p(n+1)I ′(n+2) = q(n+1)I ′(n+2).

Thus, if PG ,w′,w′′ has a solution then it has a solution of the form

(n + 1)I ′(n + 2), such that I ′ does not contain (n + 1) or (n + 2).
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Post Correspondence Problem

Proof (ctd.)

(3) p(n+1)I ′(n+2) = XpI ′w
′′XX = Xw ′XqI ′X = q(n+1)I ′(n+2), so:

– I ′ starts with I1(n +m + 3) with pI1(n+m+3) = w ′X .

– Then qI1,n+m+3 = w2X for some w2 6= ε.

– I1 contains only indices in {1, . . . , n} ∪ {n + 3, . . . , n + 2 +m}.

– Therefore, w ′ ⇒∗

G
w2.

From (3), by induction, we can show that

I ′ = I1, (n +m + 3), I2, (n +m + 3), . . . , Ik , (n +m + 3),

where Ij contains only indices in {1, . . . , n} ∪ {n + 3, . . . , n + 2 +m}.

Then pI ′ = w ′Xw2X . . .Xwl−1X and qI ′ = w2X . . .XwlX

for words w2, . . . ,wl with

w ′ ⇒∗

G w2 ⇒∗

G · · · ⇒∗

G wl
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Post Correspondence Problem

Proof (ctd.)

Thus, for every solution I = (n + 1)I ′(n + 2) we have:

pI = Xw ′Xw2 . . .Xwl−1Xw
′′XX = qI

with w ′ ⇒∗

G
w2 ⇒∗

G
· · · ⇒∗

G
wl = w ′′.

Conversely, one can prove by induction that if

w ′ = w1 ⇒∗

G
w2 ⇒∗

G
· · · ⇒∗

G
wk = w ′′

is a computation in G then there exists a partial solution I of PG ,w′,w′′

with given start n + 1 and

pI = Xw ′Xw2 . . .Xwl−1X qI = Xw ′Xw2 . . .Xwl−1XwlX

Then I , (n + 2) is a solution if wl = w ′′.

29



Post Correspondence Problem

Theorem. Assume |Σ| ≥ 2. The Post Correspondence Problem is undecidable.

Proof:
1. We first show that PCP with given start is undecidable.

Assume that the PCP with given start is decidable. By the previous result it

would follow that TransG is decidable for every ε-free STS G . We showed

that there exists at least one ε-free STS G for which TransG is undecidable.

Contradiction. Thus, the PCP with given start is undecidable.

2. We prove that PCP is undecidable.

For this, we show that for every PCP P = {(pi , qi ) | 1≤i≤n} with given start

j0 we can construct a PCP P′ such that P has a solution iff P′ has a solution.

Construction: New symbols X ,Y ; two types of encodings of words:

w = c1 . . . cn 7→ w = Xc1Xc2 . . .Xcn ; w = c1Xc2 . . .XcnX

P′ = {(p1, q1), . . . , (pn, qn), (pj0
,Xqj0 ), (XY ,Y )}

A solution of P′ can only start with rule (n + 1) (only rule where both sides

start with same symbol). P has solution with start j0 iff P′ has a solution.
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Overview

Until now: The Post Correspondence Problem

definition

undecidability

Now: Applications

Undecidabile problems in formal languages
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Undecidabile problems in formal languages

Theorem It is undecidable whether a context free grammar is ambiguous.

Proof. Assume that the problem is decidable. Construct algorithm for solving the PCP.

Let T = {(u1, v1), . . . , (un, vn)} a CS over Σ1; Σ′ = Σ1 ∪ {a1, . . . , an}.

LT ,1 = {aim . . . ai1ui1 . . . uim |m≥1, 1≤ij≤n} generated by c.f. grammar GT ,1.

GT ,1 = ({S1}, Σ
′,R1, S1), R1 = {S1 → aiS1ui | 1 ≤ i ≤ n} ∪ {S1 → aiui}

LT ,2 = {aim . . . ai1vi1 . . . vim |m≥1, 1≤ij≤n} generated by c.f. grammar GT ,2.

GT ,2 = ({S2}, Σ
′,R2, S2), R2 = {S2 → aiS2vi | 1 ≤ i ≤ n} ∪ {S2 → aivi}

GT ,1,GT ,2 are unambigouus. Let GT = ({S, S1, S2}, Σ
′,R1 ∪ R2 ∪ {S → S1, S →

S2}, S).

T has a solution iff

E

w ∈ LT ,1 ∩ LT ,2

iff

E

w ∈ L(G) with two different derivations iff GT ambiguous.
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Undecidable problems in formal languages

Theorem It is undecidable whether the intersection of two

• deterministic context-free languages (DCFL)

• non-ambiguous context-free languages

• context-free languages

is empty.

Proof. Assume that one of the problems is decidable.

Let T = {(u1, v1), . . . , (un, vn)} a CS over Σ; Σ′ = Σ ∪ {a1, . . . , an}, c 6∈ Σ′.

L1 = {wcwR | w ∈ (Σ′)∗}: non-ambiguous, deterministic.

L2 = {ui1 . . . uim aim . . . ai1caj1 . . . ajl v
R
jl
. . . vR

j1
| m, l ≥ 1, ik , jp ∈ {1, . . . , n}}

L2 non-ambigous, deterministic (see proof in the book by Erk and Priese)

T has a solution iff

E

k≥1

E

i1, . . ., ik : ui1 . . . uik = vi1 . . . vik
iff

E

k≥1

E

i1, . . ., ik : ui1 . . . uik aik . . . ai1 = (ai1 . . . aik v
R
i1
. . . vR

ik
)R

iff

E

x∈L2 such that x = wcwR iff

E

x ∈ L2 ∩ L1

If we can always decide whether L1 ∩ L2 = ∅ then PCP decidable!
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Undecidable problems in formal languages

Theorem It is undecidable whether for a context free language L ⊆ Σ∗

with |Σ| > 1 we have L = Σ∗.

Proof. Assume that is was decidable whether L = Σ∗. We show that then

it would be decidable whether L1 ∩ L2 = ∅ for DCFL.

Let L1, L2 DCFL languages over Σ. Then L1 ∩ L2 = ∅ iff L1 ∩ L2 = Σ∗ iff

L1 ∪ L2 = Σ∗.

Note that DCFL’s are closed under complement. Then L1, L2 ∈ L2, so

L1 ∪ L2 ∈ L2.

Then we could use the decision procedure to check whether L1 ∪ L2 = Σ∗,

i.e. to check whether L1 ∩ L2 = ∅. This is a contradiction, since we proved

that it is undecidable whether the intersection of two DCFLs is empty.
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Undecidable problems in formal languages

Theorem The following problems are undecidable for context-free lan-

guages L1, L2 and regular languages R over every alphabet Σ with at

least two elements.

(1) L1 = L2

(2) L2 ⊆ L1

(3) L1 = R

(4) R ⊆ L1

Proof: Let L1 be an arbitrary context-free language. Choose L2 = Σ∗

2 . Then

L2 is regular and:

• L1 = L2 iff L1 = Σ∗ (1 and 3)

• L2 ⊆ L1 iff L1 = Σ∗ (2 and 3)
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Undecidable problems for L2

decidable undecidable

w ∈ L(G) G ambiguous

L(G) = ∅ D1 ∩ D2 = ∅

L(G) finite L1 ∩ L2 = ∅ for non-ambiguous languages L1.L2

D1 = Σ∗ L1 = Σ∗ if |Σ| ≥ 2

L1 ⊆ R L1 = L2 if |Σ| ≥ 2

L1 ⊆ L2 if |Σ| ≥ 2

L1 = R if |Σ| ≥ 2

R ⊆ L1 if |Σ| ≥ 2

where L1, L2 are context-free languages; D1,D2 are DCFL languages

R is a regular language; G is a context-free grammar, w ∈ Σ∗.
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