Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (4)

21.12.2022

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions
- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Now

- Introduction/Motivation
- Primitive recursive functions

$$
\mapsto \mathcal{P}
$$

- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
- $F_{\mu}=$ WHILE
- Summary

μ-recursive Functions

Definition (μ Operator)

$$
f(\mathbf{n})=\mu i(g(\mathbf{n}, i)=0)= \begin{cases}i_{0} & \text { if } g\left(\mathbf{n}, i_{0}\right)=0 \\ & \text { and for all } 0 \leq j<i_{0} \\ & g(\mathbf{n}, j) \text { defined and } \neq 0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

The smallest i such that $g(\mathbf{n}, i)=0$ (undefined if no such i exists or when g is undefined before taking the value 0)

μ-recursive Functions

Notation:

$$
f(\mathbf{n})=\mu i(g(\mathbf{n}, i)=0)
$$

... without arguments:

$$
f=\mu g
$$

μ-recursive Functions

Definition (μ-recursive Functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$ are μ-recursive.
- Composition: The functions obtained by composition from μ^{-} recursive functions are μ-recursive.
- Primitive recursion: The functions obtained by primitive recursion from μ-recursive functions are μ-recursive.
- μ Operator: The functions obtained by applying the μ operator from μ-recursive functions are μ-recursive.

μ-recursive Functions

Definition (μ-recursive Functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$ are μ-recursive.
- Composition: The functions obtained by composition from μ recursive functions are μ-recursive.
- Primitive recursion: The functions obtained by primitive recursion from μ-recursive functions are μ-recursive.
- μ Operator: The functions obtained by applying the μ operator from μ-recursive functions are μ-recursive.

μ-recursive Functions

Definition (μ-recursive Functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$ are μ-recursive.
- Composition: The functions obtained by composition from μ recursive functions are μ-recursive.
- Primitive recursion: The functions obtained by primitive recursion from μ-recursive functions are μ-recursive.
- μ Operator: The functions obtained by applying the μ operator from μ-recursive functions are μ-recursive.

μ-recursive Functions

Definition (μ-recursive Functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$ are μ-recursive.
- Composition: The functions obtained by composition from μ recursive functions are μ-recursive.
- Primitive recursion: The functions obtained by primitive recursion from μ-recursive functions are μ-recursive.
- μ Operator: The functions obtained by applying the μ operator from μ-recursive functions are μ-recursive.

μ-recursive Functions

Definition (μ-recursive Functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$ are μ-recursive.
- Composition: The functions obtained by composition from μ recursive functions are μ-recursive.
- Primitive recursion: The functions obtained by primitive recursion from μ-recursive functions are μ-recursive.
- μ Operator: The functions obtained by applying the μ operator from μ-recursive functions are μ-recursive.

μ-recursive Functions

Notation:
$F_{\mu}=$ Set of all total μ-recursive functions
$F_{\mu}^{\text {part }}=$ Set of all μ-recursive functions
(total and partial)

μ-recursive Functions

Theorem. $\quad F_{\mu} \subseteq$ WHILE and $\quad F_{\mu}^{\text {part }} \subseteq$ WHILE $^{\text {part }}$

μ-recursive Functions

Theorem. $\quad F_{\mu} \subseteq$ WHILE and $\quad F_{\mu}^{\text {part }} \subseteq$ WHILE $^{\text {part }}$

Proof (Idea)
We already proved that $\mathcal{P}=$ LOOP \subset WHILE.
It remains to show that the μ operator can be "implemented" as a WHILE program.

μ-recursive Functions

Theorem. $\quad F_{\mu} \subseteq$ WHILE and $\quad F_{\mu}^{\text {part }} \subseteq$ WHILE $^{\text {part }}$

Proof (Idea) We already proved that $\mathcal{P}=$ LOOP \subset WHILE.
It remains to show that the μ operator can be "implemented" as a WHILE program (below: informal notation)

$$
\begin{aligned}
& i:=0 \\
& \text { while } g(\mathbf{n}, i) \neq 0 \text { do } i:=i+1 \text { end }
\end{aligned}
$$

μ-recursive Functions

Theorem. $\quad F_{\mu} \subseteq$ WHILE \quad and $\quad F_{\mu}^{\text {part }} \subseteq$ WHILE $^{\text {part }}$

Proof (Idea) We already proved that $\mathcal{P}=$ LOOP \subset WHILE.
It remains to show that the μ operator can be "implemented" as a WHILE program (below: informal notation)

$$
\begin{aligned}
& i:=0 \\
& \text { while } g(\mathbf{n}, i) \neq 0 \text { do } i:=i+1 \text { end }
\end{aligned}
$$

It can happen that the μ operator is applied to a partial function:

- $g(\mathbf{n}, j)$ might be undefined for some j before a value i is found for which $g(\mathbf{n}, i)=0$
- $g(\mathbf{n}, i)$ is defined for all i but is never 0 .

The μ operator is defined s.t. in such cases it behaves exactly like the while program.

μ-recursive Functions

Question:
Are there μ-recursive functions which are not primitive recursive?

Ackermann Funktion

Wilhelm Ackermann (1896-1962)

- Mathematician and logician
- PhD advisor: D. Hilbert

Co-author of Hilbert's Book:
"Grundzüge der Theoretischen Logik"

- Mathematics teacher, Lüdenscheid

μ-recursive Functions

Definition: Ackermann function A

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned} \quad \text { Ack }(x)=A(x, x)
$$

μ-recursive Functions

Definition: Ackermann function A

$$
\begin{array}{rlr}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y)) & \operatorname{Ack}(x)=A(x, x)
\end{array}
$$

$x y$	0	1	2	3	4	n
0	$0+1=1$	$1+1=2$	$2+1=3$	$3+1=4$	$4+1=5$	$n+1$
1	$A(0,1)=2$	$A(0, A(1,0))=3$	$A(0, A(1,1))=4$	$A(0, A(1,2))=5$	$A(0, A(1,3))=6$	$n+2$
2	$A(1,1)=3$	$A(1, A(2,0))=5$	$A(1, A(2,1))=7$	$A(1, A(2,2))=9$	$A(1, A(2,3))=11$	$2 n+3$
3	$A(2,1)=5$	$A(2, A(3,0))=13$	$A(2, A(3,1))=29$	$A(2, A(3,2))=61$	$A(2, A(3,3))=125$	$2^{n+3}-3$
4	$\begin{aligned} & A(3,1) \\ & =2^{2^{2}}-3 \\ & =13 \end{aligned}$	$\begin{aligned} & A(3, A(4,0)) \\ & =2^{2^{2^{2}}-3} \\ & =65533 \end{aligned}$	$\begin{aligned} & A(3, A(4,1)) \\ & =2^{2^{2^{2^{2}}}-3} \end{aligned}$	$\begin{aligned} & A(3, A(4,2)) \\ & =2^{2^{2^{2^{2}}}}-3 \end{aligned}$	$\begin{aligned} & A(3, A(4,3)) \\ & =2^{2^{2^{65536}}}-3 \end{aligned}$	$\underbrace{2^{2 \cdots 2^{2}}}_{n+3}-3$

μ-recursive Functions

Theorem. The Ackermann function is:

- total
- μ-recursive
- not primitive recursive

μ-recursive Functions

Theorem. The Ackermann function is:

- total
- μ-recursive
- not primitive recursive

Proof: The Ackermann function is total. (In every recursion step one of the arguments is smaller.)

We show that Ack is μ-recursive. Idea of proof:
Ack is TM-computable: We can store the recursion stack on the tape of a TM.

We will show that $F_{\mu}=$ WHILE and that $\mathrm{TM} \subseteq F_{\mu}$ From this it will follow that Ack is μ-recursive.

μ-recursive Functions

Theorem. The Ackermann function is:

- total
- μ-recursive
- not primitive recursive

Proof: Ack is not primitive recursive. Idea of proof:
For a primitive recursive function f, the depth of function unwind needed to compute $f(n)$ is the same for all n. But Ack cannot be computed with constant unwind depth. (The detailed proof is complicated.)

μ-recursive Functions

Theorem. The Ackermann function is:

- total
- μ-recursive
- not primitive recursive

Proof: Ack is not primitive recursive. Idea of proof:
For a primitive recursive function f, the depth of function unwind needed to compute $f(n)$ is the same for all n. But Ack cannot be computed with constant unwind depth. (The detailed proof is complicated.)

Alternative proof: We can show that the Ackermann function grows faster than all p.r. functions. (Proof by structural induction)

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions

$$
\mapsto \mathcal{P}
$$

- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
- $F_{\mu}=$ WHILE
- Summary

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions
- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Overview

We know that:

- $\mathrm{LOOP} \subseteq \mathrm{WHILE}=\mathrm{GOTO} \subseteq \mathrm{TM}$
- WHILE $=$ GOTO \subsetneq WHILE $^{\text {part }}=$ GOTO $^{\text {part }} \subseteq$ TM $^{\text {part }}$
- LOOP \neq TM

In this section we proved:

- LOOP $=\mathcal{P}$
- $F_{\mu} \subseteq$ WHILE and $F_{\mu}^{\text {part }} \subseteq$ WHILE ${ }^{\text {part }}$

Still to show:

- $\mathrm{TM} \subseteq F_{\mu}$
- $\mathrm{TM}^{\text {part }} \subseteq F_{\mu}^{\text {part }}$

TM revisited

(1) Gödelisation of Turing machines

We can associate with every TM

$$
M=(K, \Sigma, \delta, s)
$$

a unique Gödel number

$$
\langle M\rangle \in \mathbb{N}
$$

such that

- the coding function (computing $\langle M\rangle$ from M)
- the decoding function (computing the components of M from $\langle M\rangle$) are primitive recursive

TM revisited

(2) Gödelisation of configurations of Turing machines

We can associate with every configuration of a given TM

$$
C: \quad q, \text { wáu }
$$

a unique Gödel number

$$
\langle C\rangle \in \mathbb{N}
$$

such that

- the coding function (computing $\langle C\rangle$ from the components of the configuration C)
- the decoding function (computing the components of C from $\langle C\rangle$) are primitive recursive

The Simulation Lemma

Lemma (Simulation Lemma)
There exists a primitive recursive function

$$
f_{U}: \mathbb{N}^{3} \rightarrow \mathbb{N}
$$

such that for every Turing machine M the following hold: If C_{0}, \ldots, C_{t} are configurations of M (where $t \geq 0$) with

$$
C_{i} \vdash_{M} C_{i+1} \quad(0 \leq i<t)
$$

then:

$$
f_{U}\left(\langle M\rangle,\left\langle C_{0}\right\rangle, t\right)=\left\langle C_{t}\right\rangle
$$

The Simulation Lemma

Proof. (Idea)

- The coding/decoding functions for TM and configurations are primitive recursive
- Every single step of a TM is primitive recursive
- A given number t of steps in a TM is primitive recursive

Therefore, f_{U} is primitive recursive.
(Detailed, constructive proof in which the functions are explicitly given: 4 pages in [Erk, Priese])

TM computable functions are μ-recursive

Theorem Every TM computable function is μ-recursive.
$\mathrm{TM} \subseteq F_{\mu}$ and $\mathrm{TM}^{\text {part }} \subseteq F_{\mu}^{\text {part }}$
Proof (Sketch)
Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be a TM computable function. Let M be a TM which computes f.
$f\left(n_{1}, \ldots, n_{k}\right)=n_{k+1}$ iff $s, \# \underbrace{|\ldots|}_{n_{1}} \# \ldots \# \underbrace{|\ldots|}_{n_{k}} \# \vdash_{M} \quad h, \underbrace{|\ldots|}_{n_{k+1}} \#$
Hence: $f\left(n_{1}, \ldots, n_{k}\right)=\left(f_{U}\left(\langle M\rangle, \text { start, } \mu i\left(\left(f_{U}(\langle M\rangle, \text { start, } i)\right)_{\text {State }}=\langle h\rangle\right)\right)\right)_{w}$, where:

- start $=\langle s, \# \underbrace{|\ldots|}_{n_{1}} \# \ldots \# \underbrace{|\ldots|}_{n_{k}} \#\rangle$
- $\langle h\rangle$ is the Gödelisation of the end state
- (.) State is the decoding of the state of a configuration
- $(\cdot)_{w}$ is the decoding of the word left to the writing head
$\mu i(g(\mathbf{n}, i)=h(\mathbf{n}, i))$ is an abbreviation for $\mu i((g(\mathbf{n}, i)-h(\mathbf{n}, i))+(h(\mathbf{n}, i)-g(\mathbf{n}, i))=0)$ (smallest i for which $g(\mathbf{n}, i)=h(\mathbf{n}, i)$)

Kleene Normal Form

Corollary (Kleene Normal Form)

For every μ-recursive function f there are primitive recursive functions g, h such that

$$
f(\mathbf{n})=g(\mu i(h(\mathbf{n})=0))
$$

so $f=g \circ \mu h$.

Consequence

$$
F_{\mu}=\mathrm{TM}=\mathrm{WHILE}
$$

Summary

Classes of computable functions:

- $\mathrm{LOOP}=\mathcal{P} \subset \mathrm{WHILE}=\mathrm{GOTO}=\mathrm{TM}=F_{\mu}$
- WHILE $^{\text {part }}=$ GOTO $^{\text {part }}=$ TM $^{\text {part }}=F_{\mu}^{\text {part }}$
- LOOP \neq TM

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the functions which are Turing computable.

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the functions which are Turing computable.

Instances of this thesis: all known models of computation

- Turing machines
- Recursive functions
- λ-functions
- all known programming languages (imperative, functional, logic)
provide the same notion of computability

Alonzo Church

Alonzo Church (1903-1995)

- studied in Princeton; PhD in Princeton
- Postdoc in Göttingen
- Professor: Princeton and UCLA
- Layed the foundations of theoretical computer science (e.g. introduced the λ-calculus)
- One of the most important computer scientists

Alonzo Church

PhD Students:

- Peter Andrews: automated reasoning
- Martin Davis: Davis-Putnam procedure (automated reasoning)
- Leon Henkin: (Standard) proof of completeness of predicate logic
- Stephen Kleene: Regular expressions
- Dana Scott: Denotational Semantics, Automata theory
- Raymond Smullyan: Tableau calculi
- Alan Turing: Turing machines, Undecidability of the halting problem
- ... and many others

Next time

- Recapitulation: Turing machines and Turing computability
- Recursive functions
- Register machines (LOOP, WHILE, GOTO)
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models

