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LOOP Programs: Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP program

(and a LOOP instruction)
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs: ∆(xi := xi ± 1)(s1, s2) iff:

• s2(xi ) = s1(xi ) ± 1

• s2(xj ) = s1(xj ) for all j 6= i

(2) Sequential composition: ∆(P1;P2)(s1, s2) iff there exists s′ s.t.:

• ∆(P1)(s1, s
′)

• ∆(P2)(s
′, s2)

(3) Loop programs: ∆(loop xi do P end)(s1, s2) iff there exist states s′0 , s
′

1 , . . . , s
′

n with:

• s1(xi ) = n

• s1 = s′0

• s2 = s′n

• ∆(P)(s′k , s
′

k+1) for 0 ≤ k < n
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WHILE Programs: Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are WHILE instructions and also WHILE programs.

• If P1,P2 are WHILE programs then

– P1;P2 is a WHILE program

• If P is a WHILE program then

– while xi 6= 0 do P end is a WHILE program

(and a WHILE instruction)
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(1) On atomic programs: ∆(xi := xi ± 1)(s1, s2) iff:

• s2(xi ) = s1(xi ) ± 1

• s2(xj ) = s1(xj ) for all j 6= i

(2) Sequential composition: ∆(P1;P2)(s1, s2) iff there exists s′ s.t.:

• ∆(P1)(s1, s
′)

• ∆(P2)(s
′, s2)

(3) While programs: ∆(while xi 6= 0 do P end)(s1, s2) iff there exists n ∈ N

and there exist states s′0 , s
′

1 , . . . , s
′

n with:

• s1 = s′0

• s2 = s′n

• ∆(P)(s′k , s
′

k+1) for 0 ≤ k < n

• s′k (xi ) 6= 0 for 0 ≤ k < n

• s′n(xi ) = 0
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GOTO Programs: Syntax

Indices (numbers for the lines in the program) j ≥ 0

Definition

• Atomic programs:

– xi := xi + 1

– xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

– if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

– j1 : I1; . . . ; jk : Ik is a GOTO program
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition ∆(P)(s1, s2) holds iff for every n ≥ 0 there exist states s′0 , . . . , s
′

n and indices

z0, . . . , zn s.t.:

• s′0 = s1, s
′

n = s2; z0 = j1, zn = jk+1.

• For 0 ≤ l ≤ n, if js : Is is the line in P with js = zl :

if Is = xi := xi ± 1 then: s′i+1(xi ) = s′i (xi ) ± 1

s′i+1(xj ) = s′i (xj ) for j 6= i

zi+1 = js+1

if Is = if xi = 0 goto jgoto then: s′i+1 = s′i

zi+1 =

{

jgoto if xi = 0

js+1 otherwise
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Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.
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Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

• TM computableif there exists a Turing machine which computes f

10



Computable functions

Theorem. Every LOOP program terminates for every input.

Consequence: All LOOP computable functions are total.

WHILE and GOTO programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)
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Computable functions

LOOP = Set of all LOOP computable functions

WHILE = Set of all total WHILE computable functions

WHILEpart = Set of all WHILE computable functions

(including the partial ones)

GOTO = Set of all total GOTO computable functions

GOTOpart = Set of all GOTO computable functions

(including the partial ones)

TM = Set of all total TM computable functions

TMpart = Set of all TM computable functions

(including the partial ones)
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Relationships between LOOP, WHILE, GOTO

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction
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Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof:

I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as GOTO

programs). Proof by structural induction.

Proof: II. WHILE ⊇ GOTO and WHILEpart ⊇ GOTOpart

We proved that every GOTO program can be simulated with WHILE instructions.

Corollary

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.
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Relationships between LOOP, WHILE, GOTO

Theorem: LOOP 6= TM

Idea of the proof:

For every unary LOOP-computable function f : N → N there exists a LOOP program

Pf which computes it.

We show that:

• The set of all unary LOOP programs is recursively enumerable

• There exists a Turing machine MLOOP such that if P1,P2,P3, . . . is an

enumeration of all (unary) LOOP programs then if Pi computes from input m

output o then MLOOP computes from input (i ,m) the output o.

• We construct a TM-computable function which is not LOOP computable using

a “diagonalisation” argument.
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Summary

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO ( WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart
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