
Advanced Topics in Theoretical Computer Science

Part 2: Register machines

9.11.2022

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

2



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

3



2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

4



2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

5



Register Machines

The register machine gets its name from its one or more “registers”:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a

single positive integer.

6



Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

7



Register Machines

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code

8



Register Machines

Computation of a mod b (pseudocode)

r := a;

while r ≥ b do

r := r − b

end;

return r

9



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

10



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

11



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

12



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

13



Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Which Input/Output?

14



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

15



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

• Data types:

– The natural numbers.

This is the only difference to normal computers

16



Register Machines

Settings (Informally)

• Instruction set:

– Various variants:

loop or while or if + goto

• Data types:

– The natural numbers.

This is the only difference to normal computers

• Data structures

– Unbounded but finite number of registers denoted x1, x2, x3 . . . , xn;

each register contains a natural number

(no arrays, objects, ...)

17



Register Machines

Settings (Informally)

• Atomic instructions:

– Increment/Decrement a register

18



Register Machines

Settings (Informally)

• Atomic instructions:

– Increment/Decrement a register

• Input/Output

– Input: n input values in the first n registers

All the other registers are 0 at the beginning.

– Output: In register n + 1.

19



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

20



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

21



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP instruction and a LOOP program.

22



Example: LOOP Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

• If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

• If P is a LOOP program then

– loop xi do P end is a LOOP program (and a LOOP instruction)

23



Example: WHILE Programs

Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are WHILE instructions and also WHILE programs.

• If P1,P2 are WHILE programs then

– P1;P2 is a WHILE program

• If P is a WHILE program then

– while xi 6= 0 do P end is a WHILE program (and a WHILE instruc-

tion)

24



Example: GOTO Programs

Syntax Indexes (numbers for the lines in the program) j ≥ 0

Definition

• Atomic programs:

– xi := xi + 1

– xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

– if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

– j1 : I1; . . . ; jk : Ik is a GOTO program

25



Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.

26



Register Machines: State

Definition (State of a register machine)

The state s of a register machine is a map:

s : {xi | i ∈ N} → N

which associates with every register a natural number as value.

27



Register Machines: State

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi ) = mi for all 1 ≤ i ≤ k

• s0(xi ) = 0 for all i > k

28



Register Machines: State

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi ) = mi for all 1 ≤ i ≤ k

• s0(xi ) = 0 for all i > k

Definition (Output)

If a register machine started with the input m1, . . . ,mk ∈ N

halts in a state sterm then:

sterm(xk+1)

is the output of the machine.

29


