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2



2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

3



Last time: Register Machines

The register machine gets its name from its one or more “registers”:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a

single positive integer.

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code
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Last time: Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.
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Last time: Register Machines – State

Definition (State of a register machine)

The state s of a register machine is a map: s : {xi | i ∈ N} → N

which associates with every register a natural number as value.

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi ) = mi for all 1 ≤ i ≤ k

• s0(xi ) = 0 for all i > k

Definition (Output)

If a register machine started with the input m1, . . . ,mk ∈ N halts in a state sterm

then: sterm(xk+1) is the output of the machine.
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Register Machines: Semantics

Definition (The semantics of a register machine)

The semantics ∆(P) of a register machine P is a (binary) relation

∆(P) ⊆ S × S

on the set S of all states of the machine.

(s1, s2)∈∆(P) means that if P is executed in state s1 then it halts in state s2.
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Register Machines: Computed function

Definition (Computed function)

A register machine P computes a function

f : Nk → N

if and only if for all m1, . . . ,mk ∈ N the following holds:

If we start P with initial state with the input m1, . . . ,mk then:

• P terminates if and only if f (m1, . . . ,mk ) is defined

• If P terminates, then the output of P is f (m1, . . . ,mk )

• Additional condition (next page)

8



Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0
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Register Machines: Computed function

Definition (Computed function) (ctd)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0

Consequence: A machine which does not fulfill the additional condition

(even only for some inputs) does not compute a function at all.
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Register Machines: Computable function

Example:

The program:

P := loop x2 do x2 := x2 − 1 end; x2 := x2 + 1;

loop x1 do x1 := x1 − 1 end

does not compute a function: At the end, P has value 0 in x1 and 1 in x2.
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Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f
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Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f
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Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f
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Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

• TM computable if there exists a Turing machine which computes f

15



Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions
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Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

Still not precise:

WHILE/GOTO/TM computable functions can also be partial
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Register Machines: Computable function

LOOP = Set of all total LOOP computable functions

WHILE = Set of all total WHILE computable functions

GOTO = Set of all total GOTO computable functions

TM = Set of all total TM computable functions

WHILEpart = Set of all total or partial WHILE computable functions

GOTOpart = Set of all total or partial GOTO computable functions

TMpart = Set of all total or partial TM computable functions
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Register Machines: Overview

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines
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Last time: LOOP Programs - Syntax

Definition

(1) Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

(2) If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

(3) If P is a LOOP program then

– loop xi do P end is a LOOP instruction and a LOOP program.

The set of all LOOP programs is the smallest set with the properties

(1),(2),(3).
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi ) = s1(xi ) + 1

– s2(xj ) = s1(xj ) for all j 6= i
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi ) = s1(xi ) + 1

– s2(xj ) = s1(xj ) for all j 6= i

• ∆(xi := xi − 1)(s1, s2) if and only if:

– s2(xi ) =







s1(xi )− 1 if s1(xi ) > 0

0 if s1(xi ) = 0

– s2(xj ) = s1(xj ) for all j 6= i
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(2) Sequential composition:

• ∆(P1;P2)(s1, s2) if and only if there exists s′ such that:

– ∆(P1)(s1, s
′)

– ∆(P2)(s
′, s2)
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi ) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi ) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

Remark:

The number of steps in the loop is the value of xi at the beginning of the

loop. Changes to xi during the loop are not relevant.
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LOOP programs: Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input n1, . . . , nk if its

execution on this input terminates (in the sense above) after a finite number

of steps.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof: By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi ) is fixed, no infinite loop is possible.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof:By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi ) is fixed, no infinite loop is possible.

Consequence: All LOOP computable functions are total.
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LOOP Programs

Additional instructions

• xi := 0

loop xi do xi := xi − 1 end

• xi := c for c ∈ N

xi := 0;

xi := xi + 1;

. . .

xi := xi + 1















c times

• xi := xj

xi := 0;

loop xj do xi := xi + 1 end

30



LOOP Programs

Additional instructions

• xi := xj + xk

xi := xj ;

loop xk do xi := xi + 1 end

• xi := xj − xk

xi := xj ;

loop xk do xi := xi − 1 end

• xi := xj ∗ xk

xi := 0;

loop xk do xi := xi + xj end
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LOOP Programs

Additional instructions

In what follows, xn, xn+1, . . . denote new registers (not used before).

• xi := e1 + e2 (e1, e2 arithmetical expressions)

xi := e1;

xn := e2;

loop xn do xi := xi + 1 end; xn := 0

• xi := e1 − e2 (e1, e2 arithmetical expressions)

xi := e1;

xn := e2;

loop xn do xi := xi − 1 end; xn := 0

• xi := e1 ∗ e2 (e1, e2 arithmetical expressions)

xi := 0;

xn := e1;

loop xn do xi := xi + e2 end; xn := 0
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LOOP Programs

Additional instructions

• if xi = 0 then P1 else P2 end

xn := 1− xi ;

xn+1 := 1− xn;

loop xn do P1 end;

loop xn+1 do P2 end;

xn := 0; xn+1 := 0

• if xi ≤ xj then P1 else P2 end

xn := xi − xj ;

if xn = 0 then P1 else P2 end

xn := 0
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Register Machines: Overview

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines
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WHILE Programs: Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are WHILE instructions and WHILE programs.

• If P1,P2 are WHILE programs then

– P1;P2 is a WHILE program

• If P is a WHILE program then

– while xi 6= 0 do P end is a WHILE instruction and a WHILE

program.

The family of all WHILE programs is the smallest set which contains the

atomic programs and is closed under sequential composition and “while

constructions”.
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi ) = s1(xi ) + 1

– s2(xj ) = s1(xj ) for all j 6= i

• ∆(xi := xi − 1)(s1, s2) if and only if:

– s2(xi ) =







s1(xi )− 1 if s1(xi ) > 0

0 if s1(xi ) = 0

– s2(xj ) = s1(xj ) for all j 6= i
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(2) Sequential composition:

• ∆(P1;P2)(s1, s2) if and only if there exists s′ such that:

– ∆(P1)(s1, s
′)

– ∆(P2)(s
′, s2)
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(3) While programs

• ∆(while xi 6= 0 do P end)(s1, s2) if and only if there exists n ∈ N

and there exist states s′0, s
′

1, . . . , s
′

n with:

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

– s′
k
(xi ) 6= 0 for 0 ≤ k < n

– s′n(xi ) = 0
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(3) While programs

• ∆(while xi 6= 0 do P end)(s1, s2) if and only if there exists n ∈ N

and there exist states s′0, s
′

1, . . . , s
′

n with:

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

– s′
k
(xi ) 6= 0 for 0 ≤ k < n

– s′n(xi ) = 0

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.

Infinite loop are possible.
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WHILE and LOOP

Theorem. LOOP ⊆ WHILE

i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction “loop xi do P end”

can be simulated by the following WHILE program Pwhile:

while xi 6= 0 do ** simulate xn := xi **

xn := xn + 1; xn+1 := xn+1 + 1; xi := xi − 1

end;

while xn+1 6= 0 do ** restore xi **

xi := xi + 1; xn+1 := xn+1 − 1

end;

while xn 6= 0 do ** simulate the loop instruction **

P; xn := xn − 1

end

Here xn , xn+1 are new registers (in which at the beginning 0 is stored; not used in P).
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WHILE and LOOP

It is easy to see that the new WHILE program Pwhile “simulates”

loop xi do P end , i.e.

(s, s′) ∈ ∆(loop xi do P end) iff (s, s′) ∈ ∆(Pwhile)

Using this, it can be proved (by structural induction) that every LOOP

program can be simulated by a WHILE program.
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WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).
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WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.
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WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist WHILE programs P′

1 ,P
′

2

with ∆(Pi ) = ∆(P′

i ). Let P
′ = P′

1 ;P
′

2 (a WHILE program).

∆(P′)(s1, s2) iff there exists s with ∆(P′

1)(s1, s) and ∆(P′

2)(s, s2)

iff there exists s with ∆(P1)(s1, s) and ∆(P2)(s, s2) iff ∆(P)(s1, s2)

44



WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist WHILE programs P′

1 ,P
′

2

with ∆(Pi ) = ∆(P′

i ). Let P
′ = P′

1 ;P
′

2 (a WHILE program).

∆(P′)(s1, s2) iff there exists s with ∆(P′

1)(s1, s) and ∆(P′

2)(s, s2)

iff there exists s with ∆(P1)(s1, s) and ∆(P2)(s, s2) iff ∆(P)(s1, s2)

Case 2: P = loop xi do P1. By the induction hypothesis, there exists a WHILE
program P′

1 with ∆(P1) = ∆(P′

1). Let P′ be the following WHILE program:
P′ = while xi 6= 0 do xn := xn + 1; xn+1 := xn+1 + 1; xi := xi − 1 end;

while xn+1 6= 0 do xi := xi + 1; xn+1 := xn+1 − 1 end; while xn 6= 0 do P′

1 ; xn := xn − 1 end

∆(P′)(s1, s2) = ∆(P)(s1, s2) (show that P and P′ change values of registers in the same way).
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LOOP ⊆ WHILE

Consequences of the proof:

Corollary

The instructions defined in the context of LOOP programs:

xi := c xi := xj xi := xj + c xi := xj + xk xi = xj ∗ xk ,

if xi = 0 then Pi else Pj if xi ≤ xj then Pi else Pj

can also be used in WHILE programs.
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Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)
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Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)

Example: P := while x1 6= 0 do x1 := x1 + 1 end

computes f : N → N with:

f (n) :=







0 if n = 0

undefined if n 6= 0
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Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)
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Partial WHILE computable functions

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable

or LOOP ⊂ WHILE?
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Partial WHILE computable functions

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable

or LOOP ⊂ WHILE?

Later we will show that:

• one can construct a total TM computable function which cannot be

computed with a LOOP program

• WHILE computable = TM computable

51



Overview

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines
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GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.
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GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.

Definition

• Atomic programs:

xi := xi + 1

xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

j1 : I1; . . . ; jk : Ik is a GOTO program

54



Differences between WHILE and GOTO

Different structure:

• WHILE programs contain WHILE programs

Recursive definition of syntax and semantics.

• GOTO programs are a list of GOTO instructions

Non recursive definition of syntax and semantics.
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition. ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(1a) s′0 = s1

(1b) s′n = s2

(1c) z0 = j1

(1d) zn = jk+1

and .... (continuation on next page)
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2a) if Is is xi := xi + 1 then: s′p+1(xi ) = s′p(xi ) + 1

s′p+1(xj ) = s′p(xj ) for j 6= i

zp+1 = js+1

and .... (continuation on next page)
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2b) if Is is xi := xi − 1 then: s′p+1(xi ) =

{

s′p(xi ) − 1 if s′p(xi ) > 0

0 if s′p(xi ) = 0

s′p+1(xj ) = s′p(xj ) for j 6= i

zp+1 = js+1

and .... (continuation on next page)
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2c) if Is is if xi = 0 goto jgoto then: s′p+1 = s′p

zp+1 =

{

jgoto if xi = 0

js+1 otherwise
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GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.
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GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

Notation

• GOTO = The set of all total GOTO computable functions

• GOTOpart = The set of all GOTO computable functions

(including the partial ones)

61



WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart
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WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof (next time)

To show:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart
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