
Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

16.11.2022

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2

2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

3

Last time: Register Machines

The register machine gets its name from its one or more “registers”:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a

single positive integer.

In comparison to Turing machines:

• equally powerful fundament for computability theory

• Advantage: Programs are easier to understand

similar to ...

the imperative kernel of programming languages

pseudo-code

4

Last time: Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.

5

Last time: Register Machines – State

Definition (State of a register machine)

The state s of a register machine is a map: s : {xi | i ∈ N} → N

which associates with every register a natural number as value.

Definition (Initial state; Input)

Let m1, . . . ,mk ∈ N be given as input to a register machine.

In the input state s0 we have

• s0(xi) = mi for all 1 ≤ i ≤ k

• s0(xi) = 0 for all i > k

Definition (Output)

If a register machine started with the input m1, . . . ,mk ∈ N halts in a state sterm

then: sterm(xk+1) is the output of the machine.

6

Register Machines: Semantics

Definition (The semantics of a register machine)

The semantics ∆(P) of a register machine P is a (binary) relation

∆(P) ⊆ S × S

on the set S of all states of the machine.

(s1, s2)∈∆(P) means that if P is executed in state s1 then it halts in state s2.

7

Register Machines: Computed function

Definition (Computed function)

A register machine P computes a function

f : Nk → N

if and only if for all m1, . . . ,mk ∈ N the following holds:

If we start P with initial state with the input m1, . . . ,mk then:

• P terminates if and only if f (m1, . . . ,mk) is defined

• If P terminates, then the output of P is f (m1, . . . ,mk)

• Additional condition (next page)

8

Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0

9

Register Machines: Computed function

Definition (Computed function) (ctd)

Additional condition

We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

• Input registers x1, . . . , xk contain the initial values

• The registers xi with i > k + 1 contain value 0

Consequence: A machine which does not fulfill the additional condition

(even only for some inputs) does not compute a function at all.

10

Register Machines: Computable function

Example:

The program:

P := loop x2 do x2 := x2 − 1 end; x2 := x2 + 1;

loop x1 do x1 := x1 − 1 end

does not compute a function: At the end, P has value 0 in x1 and 1 in x2.

11

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

12

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

13

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

14

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

• TM computable if there exists a Turing machine which computes f

15

Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

16

Register Machines: Computable function

LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

Still not precise:

WHILE/GOTO/TM computable functions can also be partial

17

Register Machines: Computable function

LOOP = Set of all total LOOP computable functions

WHILE = Set of all total WHILE computable functions

GOTO = Set of all total GOTO computable functions

TM = Set of all total TM computable functions

WHILEpart = Set of all total or partial WHILE computable functions

GOTOpart = Set of all total or partial GOTO computable functions

TMpart = Set of all total or partial TM computable functions

18

Register Machines: Overview

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

19

Last time: LOOP Programs - Syntax

Definition

(1) Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are LOOP instructions and also LOOP programs.

(2) If P1,P2 are LOOP programs then

– P1;P2 is a LOOP program

(3) If P is a LOOP program then

– loop xi do P end is a LOOP instruction and a LOOP program.

The set of all LOOP programs is the smallest set with the properties

(1),(2),(3).

20

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi) = s1(xi) + 1

– s2(xj) = s1(xj) for all j 6= i

21

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi) = s1(xi) + 1

– s2(xj) = s1(xj) for all j 6= i

• ∆(xi := xi − 1)(s1, s2) if and only if:

– s2(xi) =







s1(xi)− 1 if s1(xi) > 0

0 if s1(xi) = 0

– s2(xj) = s1(xj) for all j 6= i

22

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(2) Sequential composition:

• ∆(P1;P2)(s1, s2) if and only if there exists s′ such that:

– ∆(P1)(s1, s
′)

– ∆(P2)(s
′, s2)

23

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

24

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. ∆(P) is inductively defined as follows:

(3) Loop programs

• ∆(loop xi do P end)(s1, s2) if and only if there exist states

s′0, s
′

1, . . . , s
′

n with:

– s1(xi) = n

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

Remark:

The number of steps in the loop is the value of xi at the beginning of the

loop. Changes to xi during the loop are not relevant.

25

LOOP programs: Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input n1, . . . , nk if its

execution on this input terminates (in the sense above) after a finite number

of steps.

26

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

27

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof: By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi) is fixed, no infinite loop is possible.

28

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program

that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1;P2 (Proof: Ind. hypothesis: P1 and P2 terminate, so P terminates)

Case 2: P = loop xi do P1 end

Proof:By the Induction hypothesis, P1 terminates. Since the number of steps in the

loop (the initial value of xi) is fixed, no infinite loop is possible.

Consequence: All LOOP computable functions are total.

29

LOOP Programs

Additional instructions

• xi := 0

loop xi do xi := xi − 1 end

• xi := c for c ∈ N

xi := 0;

xi := xi + 1;

. . .

xi := xi + 1















c times

• xi := xj

xi := 0;

loop xj do xi := xi + 1 end

30

LOOP Programs

Additional instructions

• xi := xj + xk

xi := xj ;

loop xk do xi := xi + 1 end

• xi := xj − xk

xi := xj ;

loop xk do xi := xi − 1 end

• xi := xj ∗ xk

xi := 0;

loop xk do xi := xi + xj end

31

LOOP Programs

Additional instructions

In what follows, xn, xn+1, . . . denote new registers (not used before).

• xi := e1 + e2 (e1, e2 arithmetical expressions)

xi := e1;

xn := e2;

loop xn do xi := xi + 1 end; xn := 0

• xi := e1 − e2 (e1, e2 arithmetical expressions)

xi := e1;

xn := e2;

loop xn do xi := xi − 1 end; xn := 0

• xi := e1 ∗ e2 (e1, e2 arithmetical expressions)

xi := 0;

xn := e1;

loop xn do xi := xi + e2 end; xn := 0

32

LOOP Programs

Additional instructions

• if xi = 0 then P1 else P2 end

xn := 1− xi ;

xn+1 := 1− xn;

loop xn do P1 end;

loop xn+1 do P2 end;

xn := 0; xn+1 := 0

• if xi ≤ xj then P1 else P2 end

xn := xi − xj ;

if xn = 0 then P1 else P2 end

xn := 0

33

Register Machines: Overview

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

34

WHILE Programs: Syntax

Definition

• Atomic programs: For each register xi :

– xi := xi + 1

– xi := xi − 1

are WHILE instructions and WHILE programs.

• If P1,P2 are WHILE programs then

– P1;P2 is a WHILE program

• If P is a WHILE program then

– while xi 6= 0 do P end is a WHILE instruction and a WHILE

program.

The family of all WHILE programs is the smallest set which contains the

atomic programs and is closed under sequential composition and “while

constructions”.

35

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(1) On atomic programs:

• ∆(xi := xi + 1)(s1, s2) if and only if:

– s2(xi) = s1(xi) + 1

– s2(xj) = s1(xj) for all j 6= i

• ∆(xi := xi − 1)(s1, s2) if and only if:

– s2(xi) =







s1(xi)− 1 if s1(xi) > 0

0 if s1(xi) = 0

– s2(xj) = s1(xj) for all j 6= i

36

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(2) Sequential composition:

• ∆(P1;P2)(s1, s2) if and only if there exists s′ such that:

– ∆(P1)(s1, s
′)

– ∆(P2)(s
′, s2)

37

WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(3) While programs

• ∆(while xi 6= 0 do P end)(s1, s2) if and only if there exists n ∈ N

and there exist states s′0, s
′

1, . . . , s
′

n with:

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

– s′
k
(xi) 6= 0 for 0 ≤ k < n

– s′n(xi) = 0

38

WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. ∆(P) is inductively defined as follows:

(3) While programs

• ∆(while xi 6= 0 do P end)(s1, s2) if and only if there exists n ∈ N

and there exist states s′0, s
′

1, . . . , s
′

n with:

– s1 = s′0

– s2 = s′n

– ∆(P)(s′
k
, s′

k+1) for 0 ≤ k < n

– s′
k
(xi) 6= 0 for 0 ≤ k < n

– s′n(xi) = 0

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.

Infinite loop are possible.

39

WHILE and LOOP

Theorem. LOOP ⊆ WHILE

i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction “loop xi do P end”

can be simulated by the following WHILE program Pwhile:

while xi 6= 0 do ** simulate xn := xi **

xn := xn + 1; xn+1 := xn+1 + 1; xi := xi − 1

end;

while xn+1 6= 0 do ** restore xi **

xi := xi + 1; xn+1 := xn+1 − 1

end;

while xn 6= 0 do ** simulate the loop instruction **

P; xn := xn − 1

end

Here xn , xn+1 are new registers (in which at the beginning 0 is stored; not used in P).

40

WHILE and LOOP

It is easy to see that the new WHILE program Pwhile “simulates”

loop xi do P end , i.e.

(s, s′) ∈ ∆(loop xi do P end) iff (s, s′) ∈ ∆(Pwhile)

Using this, it can be proved (by structural induction) that every LOOP

program can be simulated by a WHILE program.

41

WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

42

WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

43

WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist WHILE programs P′

1 ,P
′

2

with ∆(Pi) = ∆(P′

i). Let P
′ = P′

1 ;P
′

2 (a WHILE program).

∆(P′)(s1, s2) iff there exists s with ∆(P′

1)(s1, s) and ∆(P′

2)(s, s2)

iff there exists s with ∆(P1)(s1, s) and ∆(P2)(s, s2) iff ∆(P)(s1, s2)

44

WHILE and LOOP

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form xi := xi + 1 and of the form xi := xi − 1.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist WHILE programs P′

1 ,P
′

2

with ∆(Pi) = ∆(P′

i). Let P
′ = P′

1 ;P
′

2 (a WHILE program).

∆(P′)(s1, s2) iff there exists s with ∆(P′

1)(s1, s) and ∆(P′

2)(s, s2)

iff there exists s with ∆(P1)(s1, s) and ∆(P2)(s, s2) iff ∆(P)(s1, s2)

Case 2: P = loop xi do P1. By the induction hypothesis, there exists a WHILE
program P′

1 with ∆(P1) = ∆(P′

1). Let P′ be the following WHILE program:
P′ = while xi 6= 0 do xn := xn + 1; xn+1 := xn+1 + 1; xi := xi − 1 end;

while xn+1 6= 0 do xi := xi + 1; xn+1 := xn+1 − 1 end; while xn 6= 0 do P′

1 ; xn := xn − 1 end

∆(P′)(s1, s2) = ∆(P)(s1, s2) (show that P and P′ change values of registers in the same way).

45

LOOP ⊆ WHILE

Consequences of the proof:

Corollary

The instructions defined in the context of LOOP programs:

xi := c xi := xj xi := xj + c xi := xj + xk xi = xj ∗ xk ,

if xi = 0 then Pi else Pj if xi ≤ xj then Pi else Pj

can also be used in WHILE programs.

46

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)

47

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)

Example: P := while x1 6= 0 do x1 := x1 + 1 end

computes f : N → N with:

f (n) :=







0 if n = 0

undefined if n 6= 0

48

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

• WHILE programs do not always terminate

• WHILE computable functions can be undefined for some inputs

(are partial functions)

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)

49

Partial WHILE computable functions

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable

or LOOP ⊂ WHILE?

50

Partial WHILE computable functions

Notation

• WHILE = The set of all total WHILE computable functions

• WHILEpart = The set of all WHILE computable functions

(including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable

or LOOP ⊂ WHILE?

Later we will show that:

• one can construct a total TM computable function which cannot be

computed with a LOOP program

• WHILE computable = TM computable

51

Overview

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

52

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.

53

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.

Definition

• Atomic programs:

xi := xi + 1

xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

j1 : I1; . . . ; jk : Ik is a GOTO program

54

Differences between WHILE and GOTO

Different structure:

• WHILE programs contain WHILE programs

Recursive definition of syntax and semantics.

• GOTO programs are a list of GOTO instructions

Non recursive definition of syntax and semantics.

55

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition. ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(1a) s′0 = s1

(1b) s′n = s2

(1c) z0 = j1

(1d) zn = jk+1

and (continuation on next page)

56

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2a) if Is is xi := xi + 1 then: s′p+1(xi) = s′p(xi) + 1

s′p+1(xj) = s′p(xj) for j 6= i

zp+1 = js+1

and (continuation on next page)

57

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2b) if Is is xi := xi − 1 then: s′p+1(xi) =

{

s′p(xi) − 1 if s′p(xi) > 0

0 if s′p(xi) = 0

s′p+1(xj) = s′p(xj) for j 6= i

zp+1 = js+1

and (continuation on next page)

58

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if there exists n ≥ 0 and there exist:

• states s′0 , . . . , s
′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ p ≤ n, if js : Is is the line in P with js = zp (and the current state is s′p):

(2c) if Is is if xi = 0 goto jgoto then: s′p+1 = s′p

zp+1 =

{

jgoto if xi = 0

js+1 otherwise

59

GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

60

GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

Notation

• GOTO = The set of all total GOTO computable functions

• GOTOpart = The set of all GOTO computable functions

(including the partial ones)

61

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

62

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof (next time)

To show:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

63

