
Advanced Topics in Theoretical Computer Science

Part 2: Register machines (3)

23.11.2022

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2

2. Register Machines

• Register machines (Random access machines)

• LOOP Programs

• WHILE Programs

• GOTO Programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

3

Until now

• Register machines (definition; state; input/output; semantics)

Computed function

Computable functions (LOOP, WHILE, GOTO, TM)

• LOOP Programs (syntax, semantics)

Every LOOP program terminates for every input

All LOOP computable functions are total

Additional instructions

• WHILE Programs (syntax, semantics)

WHILE programs do not always terminate

WHILE computable functions can be undefined for some inputs

• GOTO Programs (syntax, semantics)

GOTO programs do not always terminate

4

Register Machines

Definition

A register machine is a machine consisting of the following elements:

• A finite (but unbounded) number of registers x1, x2, x3 . . . , xn;

each register contains a natural number.

• A LOOP-, WHILE- or GOTO-program.

5

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP

program, which computes f

• WHILE computable if there exists a register machine with a WHILE

program, which computes f

• GOTO computable if there exists a register machine with a GOTO

program, which computes f

• TM computable if there exists a Turing machine which computes f

6

Computable functions

LOOP = Set of all LOOP computable functions

WHILE = Set of all total WHILE computable functions

WHILEpart = Set of all WHILE computable functions

(including the partial ones)

GOTO = Set of all total GOTO computable functions

GOTOpart = Set of all GOTO computable functions

(including the partial ones)

TM = Set of all total TM computable functions

TMpart = Set of all TM computable functions

(including the partial ones)

7

Relationships between LOOP, WHILE, GOTO

Theorem. LOOP ⊆ WHILE (every LOOP computable function is WHILE computable)

Corollary

The instructions defined in the context of LOOP programs:

xi := c xi := xj xi := xj + c xi := xj + xk xi = xj ∗ xk ,

if xi = 0 then Pi else Pj if xi ≤ xj then Pi else Pj

can also be used in WHILE programs.

8

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

9

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

To show:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

10

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

It is sufficient to prove that while xi 6= 0 do P end can be simulated with

GOTO instructions.

We assume that P can be simulated with a GOTO program P

(i.e. that we construct equivalent GOTO programs “inside out”).

11

WHILE and GOTO

Proof (ctd.)

while xi 6= 0 do P end

is replaced by:

j1 : if xi = 0 goto j3;

P
′

;

j2 : if xn = 0 goto j1; ** Since xn = 0 unconditional jump **

j3 : xn := xn − 1

where:

• xn is a new register, which was not used before.

• P
′

is obtained from P by possibly renaming the indices.

12

WHILE and GOTO

Proof (ctd.)

while xi 6= 0 do P end

is replaced by:

j1 : if xi = 0 goto j3;

P
′

;

j2 : if xn = 0 goto j1; ** Since xn = 0 unconditional jump **

j3 : xn := xn − 1

where:

• xn is a new register, which was not used before.

• P
′

is obtained from P by possibly renaming the indices.

Remark: Totality is preserved by this transformation. Semantics is the same.

13

WHILE and GOTO

Proof (ctd.)

Using the fact that while xi 6= 0 do P end can be simulated by a GOTO

program we can show (by structural induction) that every WHILE program

can be simulated by a GOTO program.

14

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof: I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as

GOTO programs). Proof by structural induction.

15

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof: I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as

GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,

i.e. for programs of the form xi := xi ± 1 (expressible as j : xi := xi ± 1).

16

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof: I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as

GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,

i.e. for programs of the form xi := xi ± 1 (expressible as j : xi := xi ± 1).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

17

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof: I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as

GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,

i.e. for programs of the form xi := xi ± 1 (expressible as j : xi := xi ± 1).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist GOTO programs P′

1 ,P
′

2

with ∆(Pi) = ∆(P′

i). We can assume w.l.o.g. that the indices used for labelling

the instructions are disjoint. Let P′ = P′

1 ;P
′

2 (a GOTO program). We can show

that ∆(P′)(s1, s2) iff ∆(P)(s1, s2) as before.

18

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEpart = GOTOpart

Proof: I. WHILE ⊆ GOTO; WHILEpart ⊆ GOTOpart (WHILE programs expressible as

GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,

i.e. for programs of the form xi := xi ± 1 (expressible as j : xi := xi ± 1).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of P.

Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = P1;P2. By the induction hypothesis, there exist GOTO programs P′

1 ,P
′

2

with ∆(Pi) = ∆(P′

i). We can assume w.l.o.g. that the indices used for labelling

the instructions are disjoint. Let P′ = P′

1 ;P
′

2 (a GOTO program). We can show

that ∆(P′)(s1, s2) iff ∆(P)(s1, s2) as before.

Case 2: P = while xi 6= 0 do P1 end . By the induction hypothesis, there exists a

GOTO program P1 such that ∆(P1) = ∆(P1). Let P′ be the following GOTO

program: j1 : if xi = 0 goto j3; P1
′ ; j2 : if xn = 0 goto j1; j3 : xn := xn − 1

(where P1
′ is obtained from P1 by possibly renaming some indices).

It can be checked that ∆(P′)(s1, s2) iff ∆(P)(s1, s2).

19

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

It is sufficient to prove that every GOTO program can be simulated with

WHILE instructions.

20

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

It is sufficient to prove that every GOTO program can be simulated with

WHILE instructions.

We make the following assumptions (w.l.o.g):

1) All indices occurring in the program are ≥ 1

2) All indices used for goto instructions occur as labels of instructions

21

WHILE and GOTO

Proof (ctd.)

j1 : I1; j2 : I2; . . . ; jk : Ik (w.l.o.g. we can assume that ji ≥ 1 for all 1 ≤ i ≤ k)

is replaced by the following while program:

xindex := j1;

while xindex 6= 0 do

if xindex = j1 then I ′1 end;

if xindex = j2 then I ′2 end;

. . .

if xindex = jk then I ′
k
end

end

22

WHILE and GOTO

Proof (ctd.)

j1 : I1; j2 : I2; . . . ; jk : Ik (w.l.o.g. we can assume that ji ≥ 1 for all 1 ≤ i ≤ k)

is replaced by the following while program:

xindex := j1;

while xindex 6= 0 do

if xindex = j1 then I ′1 end;

if xindex = j2 then I ′2 end;

. . .

if xindex = jk then I ′
k
end

end

For 1 ≤ n < k:

If In is xi := xi ± 1:

I ′n is xi := xi ± 1; xindex := jn+1

If In is if xi = 0 goto jgoto:

I ′n is if xi = 0 then xindex := jgoto

else xindex := jn+1 end

In addition, jk+1 = 0

23

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 1

The instructions defined in the context of LOOP programs:

xi := c xi := xj xi := xj + c xi := xj + xk xi = xj ∗ xk ,

if xi = 0 then Pi else Pj if xi ≤ xj then Pi else Pj

can also be used in GOTO programs.

24

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

25

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only

one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P′.

P′ can be simulated by a WHILE-IF program with one WHILE loop only.

26

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

27

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)

28

Register Machines: Overview

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

29

Relationships

Already shown:

LOOP ⊆ WHILE = GOTO (WHILEpart = GOTOpart

30

Relationships

Already shown:

LOOP ⊆ WHILE = GOTO (WHILEpart = GOTOpart

To be proved:

• LOOP 6= WHILE

• WHILE = TM and WHILEpart = TMpart

31

GOTO ⊆ TM

Theorem GOTO ⊆ TM and GOTOpart ⊆ TMpart

32

GOTO ⊆ TM

Theorem. GOTO ⊆ TM and GOTOpart ⊆ TMpart

Proof (idea)

It is sufficient to prove that for every GOTO program

P = j1 : I1; j2 : I2; . . . ; jk : Ik

we can construct an equivalent Turing machine.

33

GOTO ⊆ TM

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

Σ = {#, |}.

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every instruction jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

34

GOTO ⊆ TM

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

Σ = {#, |}.

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every instruction jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.

35

GOTO ⊆ TM

Proof (continued)

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every program Pn = jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

In Mn

xi := xi + 1 > |(i)R(i)

xi := xi − 1 > L(i) #(i)

→ R(i)

↓|(i)

#(i)

36

GOTO ⊆ TM

Proof (continued)

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every program Pn = jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

In Mn

xi := xi + 1 > |(i)R(i)

xi := xi − 1 > L(i) #(i)

→ R(i)

↓|(i)

#(i)

Pn Mn

Pn1
;Pn2

> Mn1
Mn2

jn : if xi = 0 goto jk > L(i) #(i)

→ R(i) → Mk

↓|(i)

R(i) → Mn+1

37

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

38

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

39

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that

TM ⊆ GOTO and therefore TM = GOTO = WHILE.

40

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

41

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

If there exists a total TM-computable function f : N → N which is not

LOOP computable then we showed that LOOP 6= TM.

42

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

If there exists a total TM-computable function f : N → N which is not

LOOP computable then we showed that LOOP 6= TM.

Idea of the proof:

For every unary LOOP-computable function f : N → N there exists a LOOP program

Pf which computes it.

We show that:

• The set of all unary LOOP programs is recursively enumerable.

• There exists a Turing machine MLOOP such that if P1,P2,P3, . . . is an

enumeration of all (unary) LOOP programs then if Pi computes from input m

output o then MLOOP computes from input (i ,m) the output o.

• We construct a TM-computable function which is not LOOP computable using

a “diagonalisation” argument.

43

LOOP 6= TM

Lemma. The set of all LOOP programs is recursively enumerable.

44

LOOP 6= TM

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (Idea) Regard any LOOP program as a word over the alphabet:

ΣLOOP = {; , x , : =, +, −, 1, loop, do, end}

xi is encoded as x i .

We can easily construct a grammar which generates all LOOP programs.

Proposition (TI 1): The recursively enumerable languages are exactly the

languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

45

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs.

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

46

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs.

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

Proof: similar to the proof that there exists a universal TM, which simulates

all Turing machines.

47

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs.

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

48

LOOP 6= TM

Theorem: LOOP 6= TM

Proof: Let Ψ : N → N be defined by:

Ψ(i) = Pi (i) + 1 Output of the i-th LOOP program Pi on input i

to which 1 is added.

Ψ is clearly total. We will show that the following hold:

Claim 1: Ψ ∈ TM

Claim 2: Ψ 6∈ LOOP

49

LOOP 6= TM

Claim 1: Ψ ∈ TM

Proof: We have shown that:

• the set of all LOOP programs is r.e., i.e. there is a Turing machine M0

which enumerates P1, . . . ,Pn, . . . (as Gödel numbers)

• there exists a Turing machine MLOOP which simulates all LOOP

programs

In order to construct a Turing machine which computes Ψ we proceed as

follows:

• We use M0 to compute from i the LOOP program Pi

• We use MLOOP to compute Pi (i)

• We add 1 to the result.

50

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

51

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

52

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

Why?

53

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

The proof relies on the fact that Ψ is total (otherwise Pi0 (i0) + 1 could be

undefined).

54

Summary

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

55

Summary

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart

56

Summary

We showed that:

• LOOP (WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart

For proving this, another model of computation will be used:

recursive functions

57

