Advanced Topics in Theoretical Computer Science

Part 4: Computability and (Un-)Decidability (2)

12.01.2022 and 19.01.2022

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Last time

Theorem of Rice:

- All problems about programs (TM) which are non-trivial (in a certain sense) are undecidable

Identify undecidable problems outside the world of Turing machines

- Validity/Satisfiability in First-Order Logic

Today
The Post Correspondence Problem

Decidability and Undecidability results

Formal languages

- The Post Correspondence Problem and its consequences

Post Correspondence Problem

Idea: We consider strings over a finite alphabet Σ.
For example:
Alphabet $\Sigma=\{a, b\}$; non-empty string over Σ : "aaabba".

Assume that we have n pairs of strings $\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)$.

Post correspondence problem:
Determine whether there is a set of indices i_{1}, \ldots, i_{m} such that

$$
p_{i_{1}} p_{i_{2}} \ldots p_{i_{m}}=q_{i_{1}} q_{i_{2}} \ldots q_{i_{m}} .
$$

This can contain repeated indices, miss certain indices,...

Post Correspondence Problem

Assume that we have n pairs of strings $\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)$.
Post correspondence problem:
Determine whether there is a set of indices i_{1}, \ldots, i_{m} such that

$$
p_{i_{1}} p_{i_{2}} \ldots p_{i_{m}}=q_{i_{1}} q_{i_{2}} \ldots q_{i_{m}} .
$$

This can contain repeated indices, miss certain indices,...

Example: $\Sigma=\{a, b, c\}$
Let $P=\{(a, a b),(b, c a),(c a, a),(a b c, c)\}$.

$$
\begin{aligned}
p_{1} p_{2} p_{3} p_{1} p_{4}= & a b c a a b c=a b c a a a b c= \\
& a b c a a b c=q_{1} q_{2} q_{3} q_{1} q_{4}
\end{aligned}
$$

Post Correspondence Problem

Definition
A correspondence system (CS) P is a finite rule set over an alphabet Σ.

$$
P=\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)\right\} \text { with } p_{i}, q_{i} \in \Sigma^{*}
$$

An index sequence $I=i_{1} \ldots i_{m}$ of P is a sequence with $1 \leq i_{k} \leq n$ for all k. For every index sequence I we denote $p_{I}=p_{i_{1}} \ldots p_{i_{m}}$ and $q_{I}=q_{i_{1}} \ldots q_{i_{m}}$.

A partial solution is an index set I such that

$$
p_{l} \text { is a prefix of } q_{l} \quad \text { or } \quad q_{l} \text { is an prefix of } p_{l}
$$

A solution is an index set I such that $p_{I}=q_{l}$.
A (partial) solution with given start is a (partial) solution in which the first index i_{1} is given.

The Post correspondence problem (PCP) is the question whether a given correspondence system P has a solution.

Post Correspondence Problem

Example:
Let $P=\{(a, a b),(b, c a),(c a, a),(a b c, c)\}$.

- $I=1,2,3,1,4$ is a solution:

$$
\begin{aligned}
p_{I}=p_{1} p_{2} p_{3} p_{1} p_{4}= & a b c a a a b c=a b c a a a b c= \\
& a b c a a b c=q_{1} q_{2} q_{3} q_{1} q_{4}=q_{I}
\end{aligned}
$$

- $J=1,2,3$ is a partial solution:

$$
p_{J}=p_{1} p_{2} p_{3}=a b c a \text { is a prefix of } q_{J}=q_{1} q_{2} q_{3}=a b c a a
$$

- There are no solutions with given start 2,3 or 4 .

Plan

We will show that the Post correspondence problem is undecidable.

The proof consists of the following steps:

- We identify two types of "rewrite" systems Semi-Thue systems (STS) and Post Normal Systems (PNS).
- We show that the TM computable functions are also STS/PNS computable.
- We define $\operatorname{Trans}_{G}=\left\{(v, w) \mid v \Rightarrow^{*} w, v, w \in \Sigma^{+}\right\}$and show that there exist STS/PNS G such that Trans_{G} is undecidable.
- We assume (to derive a contradiction) that a version of the Post correspondence problem is decidable and show that then also Trans $_{G}$ is decidable (which is clearly impossible).

STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^{*} \times \Sigma^{*}$. We also write $u \rightarrow_{R} v$ for $(u, v) \in R$.
R is ε-free if for all $(u, v) \in R$ we have $u \neq \varepsilon$ and $v \neq \varepsilon$.

STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^{*} \times \Sigma^{*}$. We also write $u \rightarrow_{R} v$ for $(u, v) \in R$.
R is ε-free if for all $(u, v) \in R$ we have $u \neq \varepsilon$ and $v \neq \varepsilon$.

Semi-Thue System. In a semi-Thue System, a word w is transformed in a word w^{\prime} by applying one of the rules (u, v) in R.

Definition. A semi-Thue System (STS) is a pair $G=(\Sigma, R)$ consisting of an alphabet Σ and a set of rules R. G is ε-free if R is ε-free.

$$
w \Rightarrow_{G} w^{\prime} \quad \text { iff } \quad \exists u \rightarrow_{R} v, \exists w_{1}, w_{2} \in \Sigma^{*}\left(w=w_{1} u w_{2} \text { and } w^{\prime}=w_{1} v w_{2}\right)
$$

Example

Let G be the following semi-Thue system:

$$
G=(\{a, b\},\{a b \rightarrow b b a, b a \rightarrow a b a\})
$$

$\underline{a b} a b a \Rightarrow b b a \underline{a b} a \Rightarrow b b a b b a a$
$a \underline{b a b a} \Rightarrow a a b \underline{a b} a \Rightarrow a b b b a a$.

The rule application in not deterministic.

STS and PNS

Definition. A Post Normal System (PNS) is a pair $G=(\Sigma, R)$ where Σ is an alphabet and a set of rules $R . G$ is ε-free if R is ε-free.

It differs from a semi-Thue system in the way \Rightarrow_{G} is defined:

$$
w \Rightarrow_{G} w^{\prime} \quad \text { iff } \quad \exists u \rightarrow_{R} v, \exists w_{1} \in \Sigma^{*}\left(w=u w_{1} \text { and } w^{\prime}=w_{1} v\right)
$$

Definition. A computation in a STS or a PNS G is a sequence w_{1}, \ldots, w_{n} with $w_{i} \Rightarrow_{G} w_{i+1}$ for all $i \in\{1, \ldots, n-1\}$.
The computation does not continue if there exists no w_{n+1} with $w_{n} \Rightarrow_{G} w_{n+1}$. If there exists $n \geq 1$ with $w_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} w_{n}$ we write: $w_{1} \Rightarrow_{G}^{*} w_{n}$.

Example

Let G be the following Post Normal System:

$$
G=(\{a, b\},\{a b \rightarrow b b a, b a \rightarrow a b a, a \rightarrow b a\})
$$

Then:
$\underline{a b} a b a \Rightarrow \underline{a} b a b b a \Rightarrow \underline{b a b b a b a} \Rightarrow$ bbabaaba
$\underline{a} b a b a \Rightarrow \underline{b a b a b a} \Rightarrow \underline{b a b a a b a} \Rightarrow \underline{b a} a b a a b a \Rightarrow \underline{a} b a a b a a b a \Rightarrow .$.
(infinite computation)

Post Correspondence Problem

Definition. A partial function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ is STS computable (PNS-computable) iff there exists a STS (a PNS) G s.t. for all $w \in \Sigma_{1}^{*}$

- $\forall u \in \Sigma_{2}^{*},[w] \Rightarrow_{G}^{*}[u\rangle$ iff $f(w)=u$
- $\nexists v \in \Sigma_{2}^{*},[w] \Rightarrow_{G}^{*}[v\rangle$ iff $f(w)$ undefined.

Note: [,], > are special symbols
$F_{S T S}^{\text {part }}$: the family of all (partial) STS computable functions
$F_{P N S}^{\text {part }}$: the family of all (partial) PNS computable functions

Post Correspondence Problem

Theorem $T M^{\text {part }} \subseteq F_{S T S}^{\text {part }} ; T M^{\text {part }} \subseteq F_{P N S}^{\text {part }}$.

Proof:

Idea: show that we can simulate the way a TM works using a suitable STS. We then show that we can slightly change the STS and obtain a PNS which simulates the TM.

From the proof it can be seen that we can simulate any TM using a ε-free STS and ε-free PNS.

The full proof is rather long and is not presented here.
It can be found on pages 309-311 in the book "Theoretische Informatik" (3. Auflage) by Erk and Priese.

Post Correspondence Problem

$\operatorname{Trans}_{G}=\left\{(v, w) \mid v \Rightarrow_{G}^{*} w \wedge v, w \in \Sigma^{+}\right\}$

Theorem.

There exists an ε-free STS G such that Trans_{G} is undecidable.
There exists an ε-free PNS G such that Trans $_{G}$ is undecidable.

Proof.
We can reduce $K=\left\{n \mid M_{n}\right.$ halts on input $\left.n\right\}$ to Trans $_{G}$ for a certain STS (PNS) G.
Let G be an ε-free STS or PNS which computes the function of the TM

$$
M=M_{K} M_{\text {delete }}
$$

where M_{K} is the TM which accepts K and $M_{\text {delete }}$ deletes the band after M_{K} halts (such a $T M$ can easily be constructed because $M_{K}=M_{\text {prep }} U_{0}$; the halting configurations of the universal TM U_{0} are of the form $h_{U},\left.\left.\#\right|^{n} \#\right|^{m} \#$).
Input $v: M_{K}$ halts iff M_{v} halts on v. If M_{K} halts, $M_{\text {delete }}$ deletes the tape.

Post Correspondence Problem

Proof. (ctd.)

Assume Trans $_{G}$ decidable. We show how to use G and the decision procedure for Trans $_{G}$ to decide K :

$$
\begin{aligned}
& \text { For } v=[\underbrace{|\ldots|}_{n \text { times }}] \text { and } w=[\varepsilon\rangle \text { we have: } \\
& (v, w) \in \operatorname{Trans}_{G} \quad \text { iff } \quad\left(v \Rightarrow_{G}^{*} w\right) \\
& \\
& \text { iff } \quad M=M_{K} M_{\text {delete }} \text { halts for input }\left.\right|^{n} \text { with \# } \\
& \\
& \\
& \text { iff } \quad M_{K} \text { halts for input }\left.\right|^{n} \\
& \\
& \\
& \text { iff } \quad n \in K .
\end{aligned}
$$

Post Correspondence Problem

Theorem For every ε-free semi-Thue System G and every pair of words $w^{\prime}, w^{\prime \prime} \in \Sigma^{+}$there exists a Post Correspondence System $P_{G, w^{\prime}, w^{\prime \prime}}$ such that

$$
P_{G, w^{\prime}, w^{\prime \prime}} \text { has a solution with given start iff } w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime} .
$$

Proof: Assume that we are given

- G an ε-free STS $G=(\Sigma, R)$ with $|\Sigma|=m$ and $R=\left\{u_{1} \rightarrow v_{1}, \ldots, u_{n} \rightarrow v_{n}\right\}$ with $u_{i}, v_{i} \in \Sigma^{+}$
- $w^{\prime}, w^{\prime \prime} \in \Sigma^{+}$

We construct the correspondence system $P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\left(p_{i}, q_{i}\right) \mid 1 \leq i \leq k\right\}$ with $k=n+m+3$ over the alphabet $\Sigma_{X}=\Sigma \cup X$ with:

- the first n rules are the rules in R
- the rule $n+1$ is $\left(X, X w^{\prime} X\right)$; the rule $n+2$ is ($w^{\prime \prime} X X, X$)
- the rules $n+2+1, \ldots, n+2+m$ are (a, a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is $n+1$.

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} c a \underline{a b} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(a, a),(b, b),(a b, c),(b a, a),(X, X c a a b a X),(a b c X X, X),
\end{array},(X, X)\right\}
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$

$$
p_{4} \quad X \quad=\text { XcaabaX } \quad=q_{4}
$$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} \text { caabb} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(a, a), a b),(b, b),(c, c),(X, X)\}
\end{array}\right) .(b a, a),(X, X c a a b a X),(a b c X X, X)
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow{ }_{G}^{*} w^{\prime \prime}$

$$
p_{486} \quad=\text { Xca } \quad=\text { XcaabaXca } \quad=q_{486}
$$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} \text { caabb} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(a, a), a b),(b, b),(c, c),(X, X)\}
\end{array}\right) .(b a, a),(X, X c a a b a X),(a b c X X, X)
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$

$$
p_{4862}=\text { Xcaab } \quad=\text { XcaabaXcac } \quad=q_{4862}
$$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} \text { caabb} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(a, a),(b, b),(a b, c),(b a, a),(X, X c a a b a X),(a b c X X, X),
\end{array},(X, X)\right\}
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$

$$
p_{486269}=\text { XcaabaX } \quad=\text { XcaabaXcacaX } \quad=q_{486269}
$$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} c a \underline{a b} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(c a, a b),(b, b),(c, c),(X, X)\}
\end{array}\right) .(b a, a),(X, X c a a b a X),(a b c X X, X)
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$

$$
p_{48626986}=\text { XcaabaXca } \quad=\text { XcaabaXcacaXca } \quad=q_{48626986}
$$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
w^{\prime}=c a \underline{a b} a \Rightarrow_{2} \text { caca } \Rightarrow_{1} c a \underline{a b} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime}
$$

$$
\begin{aligned}
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
\\
\\
\\
\\
\\
(a, a), a b),(b, b),(c, c),(X, X)\}
\end{array}\right) .(b a, a),(X, X c a a b a X),(a b c X X, X)
\end{aligned}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$
$p_{4862698619}=$ XcaabaXcacaX $=$ XcaabaXcacaXcaabX $=q_{4862698619}$

Example

$G=(\Sigma, R)$ with $\Sigma=\{a, b, c\}$ and $R=\{c a \rightarrow a b, a b \rightarrow c, b a \rightarrow a\}$.
For the word pair $w^{\prime}=c a a b a, w^{\prime \prime}=a b c$ we have

$$
\begin{gathered}
w^{\prime}=c a \underline{a b} a \Rightarrow 2 \text { caca } \Rightarrow_{1} c a \underline{a b} \Rightarrow_{2} \underline{c a c} \Rightarrow_{1} a b c=w^{\prime \prime} \\
P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\begin{array}{l}
(c a, a b),(a b, c),(b a, a),(X, X c a a b a X),(a b c X X, X) \\
\\
(a, a),(b, b),(c, c),(X, X)\}
\end{array}\right.
\end{gathered}
$$

We can see that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution with start $n+1$ iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$
$p_{4862698619}=$ XcaabaXcacaX $\quad=$ XcaabaXcacaXcaabX $=q_{4862698619}$
The successive application of rules $2,1,2,1$ corresponds to the solution $I=\underline{4}, 8,6, \underline{2}, 6,9,8,6, \underline{1}, 9,8,6, \underline{2}, 9, \underline{1}, 8,9, \underline{\underline{5}}$
4,4: begin/end; Underlines: rule applications. Remaining numbers: copy symbols such that rule applications at the desired position. X separates the words in G-derivations.
$p_{I}=X c a a b a X c a c a X c a a b X c a c X a b c X X=q /$

Post Correspondence Problem

Theorem For every ε-free semi-Thue System G and every pair of words $w^{\prime}, w^{\prime \prime} \in \Sigma^{+}$there exists a Post Correspondence System $P_{G, w^{\prime}, w^{\prime \prime}}$ such that

$$
P_{G, w^{\prime}, w^{\prime \prime}} \text { has a solution with given start iff } w^{\prime} \Rightarrow{ }_{G}^{*} w^{\prime \prime} .
$$

Proof: Assume that we are given

- G an ε-free STS $G=(\Sigma, R)$ with $|\Sigma|=m$ and $R=\left\{u_{1} \rightarrow v_{1}, \ldots, u_{n} \rightarrow v_{n}\right\}$ with $u_{i}, v_{i} \in \Sigma^{+}$
- $w^{\prime}, w^{\prime \prime} \in \Sigma^{+}$

We construct the correspondence system $P_{G, w^{\prime}, w^{\prime \prime}}=\left\{\left(p_{i}, q_{i}\right) \mid 1 \leq i \leq k\right\}$ with $k=n+m+3$ over the alphabet $\Sigma_{X}=\Sigma \cup X$ with:

- the first n rules are the rules in R
- the rule $n+1$ is $\left(X, X w^{\prime} X\right)$; the rule $n+2$ is ($w^{\prime \prime} X X, X$)
- the rules $n+2+1, \ldots, n+2+m$ are (a, a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is $n+1$.

Post Correspondence Problem

Proof (ctd.) We show that $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution iff $w^{\prime} \Rightarrow_{G}^{*} w^{\prime \prime}$.
Occurrences of $X \mapsto \ln$ the solution index $n+2$ must occur.
Assume $(n+1) I^{\prime}(n+2) I^{\prime \prime}$ is a solution in which I^{\prime} does not contain $n+1$, nor $n+2$. By careful analysis of the equality $p_{(n+1) I^{\prime}(n+2) I^{\prime \prime}}=q_{(n+1) I^{\prime}(n+2) I^{\prime \prime}}$ we note the following:
(1) no $X X$ in $q_{(n+1) I^{\prime}}$

$$
\Rightarrow p_{(n+1) I^{\prime}(n+2)} \text { cannot be a strict prefix of } q_{(n+1) I^{\prime}(n+2)}
$$

(2) $p_{(n+1) I^{\prime}(n+2)}$ and $q_{(n+1) I^{\prime}(n+2)}$ contain the same number of X symbols; $p_{(n+1) I^{\prime}}$ contains fewer X symbols than $q_{(n+1) I^{\prime}}$
$\Rightarrow q_{(n+1) I^{\prime}(n+2)}$ cannot be a strict prefix of $p_{(n+1) I^{\prime}(n+2)}$.
From (1) and (2) it follows that $p_{(n+1) I^{\prime}(n+2)}=q_{(n+1) I^{\prime}(n+2)}$.
Thus, if $P_{G, w^{\prime}, w^{\prime \prime}}$ has a solution then it has a solution of the form $(n+1) I^{\prime}(n+2)$, such that I^{\prime} does not contain $(n+1)$ or $(n+2)$.

Post Correspondence Problem

Proof (ctd.)
(3) $p_{(n+1) \prime^{\prime}(n+2)}=X p_{\prime \prime} w^{\prime \prime} X X=X w^{\prime} X q_{\prime^{\prime}} X=q_{(n+1) I^{\prime \prime}(n+2)}$, so:

- I^{\prime} starts with $I_{1}(n+m+3)$ with $p_{l_{1}(n+m+3)}=w^{\prime} X$.
- Then $q_{l_{1}, n+m+3}=w_{2} X$ for some $w_{2} \neq \varepsilon$.
$-I_{1}$ contains only indices in $\{1, \ldots, n\} \cup\{n+3, \ldots, n+2+m\}$.
- Therefore, $w^{\prime} \Rightarrow_{G}^{*} w_{2}$.

From (3), by induction, we can show that

$$
I^{\prime}=I_{1},(n+m+3), I_{2},(n+m+3), \ldots, I_{k},(n+m+3),
$$

where I_{j} contains only indices in $\{1, \ldots, n\} \cup\{n+3, \ldots, n+2+m\}$.
Then $p_{l^{\prime}}=w^{\prime} X w_{2} X \ldots X w_{l-1} X$ and $q_{I^{\prime}}=w_{2} X \ldots X w_{l} X$ for words w_{2}, \ldots, w_{l} with

$$
w^{\prime} \Rightarrow{ }_{G}^{*} w_{2} \Rightarrow_{G}^{*} \cdots \Rightarrow_{G}^{*} w_{1}
$$

Post Correspondence Problem

Proof (ctd.)

Thus, for every solution $I=(n+1) I^{\prime}(n+2)$ we have:

$$
p_{I}=X w^{\prime} X w_{2} \ldots X w_{l-1} X w^{\prime \prime} X X=q_{l}
$$

with $w^{\prime} \Rightarrow{ }_{G}^{*} w_{2} \Rightarrow_{G}^{*} \cdots \Rightarrow_{G}^{*} w_{I}=w^{\prime \prime}$.

Conversely, one can prove by induction that if

$$
w^{\prime}=w_{1} \Rightarrow_{G}^{*} w_{2} \Rightarrow_{G}^{*} \cdots \Rightarrow_{G}^{*} w_{k}=w^{\prime \prime}
$$

is a computation in G then there exists a partial solution I of $P_{G, w^{\prime}, w^{\prime \prime}}$ with given start $n+1$ and

$$
p_{I}=X w^{\prime} X w_{2} \ldots X w_{l-1} X \quad q_{I}=X w^{\prime} X w_{2} \ldots X w_{I-1} X w_{l} X
$$

Then $I,(n+2)$ is a solution if $w_{l}=w^{\prime \prime}$.

Post Correspondence Problem

Theorem. Assume $|\Sigma| \geq 2$. The Post Correspondence Problem is undecidable.

Proof:

1. We first show that PCP with given start is undecidable.

Assume that the PCP with given start is decidable. By the previous result it would follow that Trans $_{G}$ is decidable for every ε-free STS G. We showed that there exists at least one ε-free STS G for which Trans_{G} is undecidable. Contradiction. Thus, the PCP with given start is undecidable.
2. We prove that PCP is undecidable.

For this, we show that for every PCP $P=\left\{\left(p_{i}, q_{i}\right) \mid 1 \leq i \leq n\right\}$ with given start j we can construct a PCP P^{\prime} such that P has a solution iff P^{\prime} has a solution.
Construction: New symbols X, Y; two types of encodings of words:

$$
\begin{aligned}
& w=c_{1} \ldots c_{n} \mapsto \quad \bar{w}=X c_{1} X c_{2} \ldots X c_{n} ; \quad \overline{\bar{w}}=c_{1} X c_{2} \ldots X c_{n} X \\
& P^{\prime}=\left\{\left(\bar{p}_{1}, \overline{\overline{q_{1}}}\right), \ldots,\left(\bar{p}_{n}, \overline{\overline{q_{n}}}\right),\left(\bar{p}_{j_{0}}, X \overline{\overline{q_{j_{0}}}}\right),(X Y, Y)\right\}
\end{aligned}
$$

A solution of P^{\prime} can only start with rule $(n+1)$ (only rule where both sides start with same symbol). P has solution with start j_{0} iff P^{\prime} has a solution.

Overview

Until now: The Post Correspondence Problem definition
undecidability
Now: Applications
Undecidabile problems in formal languages

Undecidabile problems in formal languages

Theorem It is undecidable whether a context free grammar is ambiguous.

Proof. Assume that the problem is decidable. Construct algorithm for solving the PCP.
Let $T=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ a CS over $\Sigma_{1} ; \quad \Sigma^{\prime}=\Sigma_{1} \cup\left\{a_{1}, \ldots, a_{n}\right\}$.
$L_{T, 1}=\left\{a_{i_{m}} \ldots a_{i_{1}} u_{i_{1}} \ldots u_{i_{m}} \mid m \geq 1,1 \leq i_{j} \leq n\right\}$ generated by c.f. grammar $G_{T, 1}$.
$G_{T, 1}=\left(\left\{S_{1}\right\}, \Sigma^{\prime}, R_{1}, S_{1}\right), R_{1}=\left\{S_{1} \rightarrow a_{i} S_{1} u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{S_{1} \rightarrow a_{i} u_{i}\right\}$
$L_{T, 2}=\left\{a_{i_{m}} \ldots a_{i_{1}} v_{i_{1}} \ldots v_{i_{m}} \mid m \geq 1,1 \leq i_{j} \leq n\right\}$ generated by c.f. grammar $G_{T, 2}$.
$G_{T, 2}=\left(\left\{S_{2}\right\}, \Sigma^{\prime}, R_{2}, S_{2}\right), R_{2}=\left\{S_{2} \rightarrow a_{i} S_{2} v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{S_{2} \rightarrow a_{i} v_{i}\right\}$
$G_{T, 1}, G_{T, 2}$ are unambigouus. Let $G_{T}=\left(\left\{S, S_{1}, S_{2}\right\}, \Sigma^{\prime}, R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow\right.\right.$ $\left.\left.S_{2}\right\}, S\right)$.
T has a solution iff $\quad \exists w \in L_{T, 1} \cap L_{T, 2}$
iff $\exists w \in L(G)$ with two different derivations iff $\quad G_{T}$ ambiguous.

Undecidable problems in formal languages

Theorem It is undecidable whether the intersection of two

- deterministic context-free languages (DCFL)
- non-ambiguous context-free languages
- context-free languages
is empty.

Proof. Assume that one of the problems is decidable.
Let $T=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ a CS over $\Sigma ; \Sigma^{\prime}=\Sigma \cup\left\{a_{1}, \ldots, a_{n}\right\}, c \notin \Sigma^{\prime}$.
$L_{1}=\left\{w c w^{R} \mid w \in\left(\Sigma^{\prime}\right)^{*}\right\}:$ non-ambiguous, deterministic.
$L_{2}=\left\{u_{i_{1}} \ldots u_{i_{m}} a_{i_{m}} \ldots a_{i_{1}} c a_{j_{1}} \ldots a_{j_{l}} v_{j_{l}}^{R} \ldots v_{j_{1}}^{R} \mid m, l \geq 1, i_{k}, j_{p} \in\{1, \ldots, n\}\right\}$
L_{2} non-ambigous, deterministic (see proof in the book by Erk and Priese)
T has a solution iff $\exists k \geq 1 \exists i_{1}, \ldots, i_{k}: u_{i_{1}} \ldots u_{i_{k}}=v_{i_{1}} \ldots v_{i_{k}}$
iff $\quad \exists k \geq 1 \exists i_{1}, \ldots, i_{k}: u_{i_{1}} \ldots u_{i_{k}} a_{i_{k}} \ldots a_{i_{1}}=\left(a_{i_{1}} \ldots a_{i_{k}} v_{i_{1}}^{R} \ldots v_{i_{k}}^{R}\right)^{R}$
iff $\quad \exists x \in L_{2}$ such that $x=w c w^{R} \quad$ iff $\quad \exists x \in L_{2} \cap L_{1}$
If we can always decide whether $L_{1} \cap L_{2}=\emptyset$ then PCP decidable!

Undecidable problems in formal languages

Theorem It is undecidable whether for a context free language $L \subseteq \Sigma^{*}$ with $|\Sigma|>1$ we have $L=\Sigma^{*}$.

Proof. Assume that is was decidable whether $L=\Sigma^{*}$. We show that then it would be decidable whether $L_{1} \cap L_{2}=\emptyset$ for DCFL.

Let L_{1}, L_{2} DCFL languages over Σ. Then $L_{1} \cap L_{2}=\emptyset$ iff $\overline{L_{1} \cap L_{2}}=\Sigma^{*}$ iff $\overline{L_{1}} \cup \overline{L_{2}}=\Sigma^{*}$.
Note that DCFL's are closed under complement. Then $\overline{L_{1}}, \overline{L_{2}} \in \mathcal{L}_{2}$, so $\overline{L_{1}} \cup \overline{L_{2}} \in \mathcal{L}_{2}$.

Then we could use the decision procedure to check whether $\overline{L_{1}} \cup \overline{L_{2}}=\Sigma^{*}$, i.e. to check whether $L_{1} \cap L_{2}=\emptyset$. This is a contradiction, since we proved that it is undecidable whether the intersection of two DCFLs is empty.

Undecidable problems in formal languages

Theorem The following problems are undecidable for context-free languages L_{1}, L_{2} and regular languages R over every alphabet Σ with at least two elements.
(1) $L_{1}=L_{2}$
(2) $L_{2} \subseteq L_{1}$
(3) $L_{1}=R$
(4) $R \subseteq L_{1}$

Proof: Let L_{1} be an arbitrary context-free language. Choose $L_{2}=\Sigma_{2}^{*}$. Then L_{2} is regular and:

- $L_{1}=L_{2}$ iff $L_{1}=\Sigma^{*}(1$ and 3$)$
- $L_{2} \subseteq L_{1}$ iff $L_{1}=\Sigma^{*}(2$ and 3$)$

Undecidable problems for \mathcal{L}_{2}

decidable	undecidable	
$w \in L(G)$	G ambiguous	
$L(G)=\emptyset$	$D_{1} \cap D_{2}=\emptyset$	
$L(G)$ finite	$L_{1} \cap L_{2}=\emptyset$	for non-ambiguous languages $L_{1} \cdot L_{2}$
$D_{1}=\Sigma^{*}$	$L_{1}=\Sigma^{*}$	if $\|\Sigma\| \geq 2$
$L_{1} \subseteq R$	$L_{1}=L_{2}$	if $\|\Sigma\| \geq 2$
	$L_{1} \subseteq L_{2}$	if $\|\Sigma\| \geq 2$
	$L_{1}=R$	if $\|\Sigma\| \geq 2$
	$R \subseteq L_{1}$	if $\|\Sigma\| \geq 2$

where L_{1}, L_{2} are context-free languages; D_{1}, D_{2} are DCFL languages
R is a regular language; G is a context-free grammar, $w \in \Sigma^{*}$.

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Brief outlook: other computation models

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Brief outlook: other computation models

