
Advanced Topics in Theoretical Computer Science

Part 1: Turing Machines and Turing Computability (2)

10.11.2021

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Last time

• Deterministic Turing Machine (DTM)

• Configuration, transition between configurations, computation

To halt, to hang

• Representation of Turing machines

- as in definition

- diagram (flow-chart) representation

• Definitions: TM-computable functions

• Types of Turing machines

2



Universal Turing machines

Comparison between Turing machines and “normal” computer

Turing machines are very powerful.

How powerful?

• A Turing machine has a given “program” (set of rules, δ)

• “Normal” computer can execute arbitrary programs.

3



Universal Turing machines

Comparison between Turing machines and “normal” computer

Turing machines are very powerful.

How powerful?

• A Turing machine has a given “program” (set of rules, δ)

• “Normal” computer can execute arbitrary programs.

Actually, this is possible also with Turing machines

4



Universal Turing Machines

Turing machine which simulates other Turing machines

• Universal Turing machine U receives as input

(i) the rules of an arbitrary TM M and

(ii) a word w .

• U simulates M, by always changing the configurations (according to

the transition function δ) the way M would change them.

5



Universal Turing Machines

Turing machine which simulates other Turing machines

• Universal Turing machine U receives as input

(i) the rules of an arbitrary TM M and

(ii) a word w .

• U simulates M, by always changing the configurations (according to

the transition function δ) the way M would change them.

Problem: Turing machines take words (or numbers) as inputs.

Question:

Can we encode an arbitrary Turing machine as a number or as a word?

6



Universal Turing Machines

Gödelisation

Method for assigning with every Turing machine a number or a word

(Gödel number or Gödel word) such that the Turing machine can be

effectively reconstructed from that number (or word).

7



Universal Turing Machines

Gödelisation

Method for assigning with every Turing machine a number or a word

(Gödel number or Gödel word) such that the Turing machine can be

effectively reconstructed from that number (or word).

We can construct a universal Turing machine.

8



Acceptance and Decidability

We now formalize notions such as:

• Acceptable language

• Recursively enumerable language

• Enumerable language

• Decidable language

and present the relationships between these notions.

9



Acceptance and Decidability

Acceptance

A DTM M accepts a language L if

• for every input word w ∈ L, M halts;

• for every input word w 6∈ L, M computes infinitely or hangs.

10



Acceptance and Decidability

Acceptance

A DTM M accepts a language L if

• for every input word w ∈ L, M halts;

• for every input word w 6∈ L, M computes infinitely or hangs.

Deciding

A DTM M decides a language L if

• for every input word w ∈ L, M halts with band contents Y (yes)

• for every input word w 6∈ L, M halts with band contents N (no)

11



Acceptance and Decidability

Definition (Decidable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M decides L if for all w ∈ Σ∗
0 :

s, #w# ⊢∗
M







h, #Y# if w ∈ L

h, #N# if w 6∈ L

• L is called decidable if there exists a DTM which decides L.

12



Acceptance and Decidability

Definition (Acceptable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M accepts a word w ∈ Σ∗
0 if M always halts on input w .

• M accepts the language L if for all w ∈ Σ∗
0 , M accepts w iff w ∈ L.

• L is called acceptable (or semi-decidable) if there exists a DTM

which accepts L.

13



Recursively enumerable

Definition (Recursively enumerable language)

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M enumerates L if there exists a state qB ∈ K (the blink state)

such that:

L = {w ∈ Σ∗
0 |

E

u ∈ Σ∗; s, # ⊢∗
M qB , #w#u}

• L is called recursively enumerable if there exists a DTM M which

enumerates L.

14



Recursively enumerable

Attention: recursively enumerable 6= enumerable!

15



Recursively enumerable

Attention: recursively enumerable 6= enumerable!

Difference:

• L enumerable: there exists a surjective map of the natural numbers

onto L.

• L recursively enumerable: the surjective map can be computed by a

Turing machine.

Because of the finiteness of the words and of the alphabet, all languages

are enumerable. But not all languages are recursively enumerable.

16



Recursively enumerable

Attention: recursively enumerable 6= enumerable!

Difference:

• L enumerable: there exists a surjective map of the natural numbers

onto L.

• L recursively enumerable: the surjective map can be computed by a

Turing machine.

Because of the finiteness of the words and of the alphabet, all languages

are enumerable. But not all languages are recursively enumerable.

7→ Set of all languages is not enumerable;

Turing machines can be enumerated.

17



Recursively enumerable

Attention: recursively enumerable 6= decidable!

18



Recursively enumerable

Attention: recursively enumerable 6= decidable!

Examples:

The following sets are recursively enumerable, but not decidable:

• The set of the Gödelisations of all halting Turing machines.

• The set of all terminating programs.

• The set of all valid formulae in predicate logic.

19



Acceptable/Recursively enumerable/Decidable

Theorem (Acceptable = Recursively enumerable)

A language is recursively enumerable iff it is acceptable.

Proposition

Every decidable language is acceptable.

Proposition

The complement of any decidable language is decidable.

Proposition (Characterisation of decidability)

A language L is decidable iff L and its complement are acceptable.

20



Recursively enumerable = Type 0

Formal languages are of type 0 if they can be generated by arbitrary

grammars (no restrictions).

Proposition

The recursively enumerable languages (i.e. the languages acceptable by

DTMs) are exactly the languages generated by arbitrary grammars (i.e.

languages of type 0).

21



Undecidability of the halting problem

M Turing machine 7→ G(M) Gödelisation

HALT = {(G(M),w) | M halts on input w}

Is HALT decidable?

22



Undecidability of the halting problem

Proposition:

HALT = {(G(M),w) | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM

MH which halts on every input and accepts only inputs in HALT .

We construct the following TM:

accept

reject

loopsM
x x#x

Copy MH Loop

1. Let x be the input.

2. Copy the input. Let x#x be the result.

3. Decide using MH if (x , x) ∈ HALT

4. If yes: loop

5. If no: halt

23



Undecidability of the halting problem

Proposition:

HALT = {(G(M),w) | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM

MH which halts on every input and accepts only inputs in HALT .

What happens when we start M with input G(M)?

accept

reject

loopsM
x x#x

Copy MH Loop

Case 1: M started with G(M) halts: Then (G(M),G(M)) 6∈ HALT Contradiction!

Case 2: M started with G(M) does not halt: Then (G(M),G(M))∈HALT Contradiction!

24



Undecidability proofs: Example

Theorem. K = {G(M) | M halts for input G(M)}

is acceptable but undecidable.

Proof: Undecidable: Similar to the undecidability proof for HALT .

Acceptable: MK := MprepU ,

(U universal TM; Mprep brings tape in form required by U).

Reformulation using numbers instead of words:

Gödelization 7→ Gödel numbers

Let M0,M1, . . . ,Mn, . . . be an enumeration of all Turing Machines

Mn is the TM with Gödel number n.

K = {n | Mn halts on input n}

25



Today

• How to prove that a language is undecidable?

26



Undecidability proofs

Proof via reduction

• L1, L2 languages

• L1 known to be undecidable

• To show: L2 undecidable

• Idea: Assume L2 decidable. Let M2 be a TM which decides L2. Show

that then we can construct a TM which decides L1.

For this, we have to find a computable function f which transforms an

instance of L1 into an instance of L2

A

w(w ∈ L1 iff f (w) ∈ L2)

Let Mf be the TM which computes f . Construct M1 = Mf M2. Then

M1 decides L1.

27



Undecidability proofs

Proof via reduction

Definition. L1, L2 languages. L1 ≤ L2 (L1 is reducible to L2) if there exists

a computable function f such that:

A

w(w ∈ L1 iff f (w) ∈ L2)

Theorem. If L1 ≤ L2 and L1 is undecidable then L2 is undecidable.

28



Undecidability proofs: Example

Theorem. H0 = {n | Mn halts for input 0} is undecidable.

Proof: We show that K can be reduced to H0, i.e. that there exists a TM

computable function f : N → N such that

i ∈ K iff f (i) ∈ H0.

Only main idea here, we will come back to this example later

29



Undecidability proofs: Example

Theorem. H0 = {n | Mn halts for input 0} is undecidable.

Proof: We show that K can be reduced to H0, i.e. that there exists a TM

computable function f : N → N such that i ∈ K iff f (i) ∈ H0.

Want: f (i) = j iff (Mi halts for input i iff Mj halts for input 0).

For every i there exists a TM Ai s.t.: s, ## ⊢∗
Ai

h, #|i#.

Let MK be the TM which accepts K .

We define f (i) := j where j is the Gödel number of Mj = AiMK .

f is TM computable. We show that f has the desired property:

f (i) = j ∈ H0 iff Mj = AiMK halts for input 0 (##)

iff MK halts for input i iff i ∈ K .

30


