Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (1)

$$
1.12 .2021
$$

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions
- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable
(We consider functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}, k \geq 0$)

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

- Simple ("atomic") functions are computable
- "Combinations" of computable functions are computable
(We consider functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}, k \geq 0$)

Questions

- Which are the atomic functions?
- Which combinations are possible?

Recursive functions: Atomic functions

The following functions are primitive recursive and μ-recursive:

Recursive functions: Atomic functions

The following functions are primitive recursive and μ-recursive:
The constant null

$$
0: \mathbb{N}^{0} \rightarrow \mathbb{N} \text { with } 0()=0
$$

Recursive functions: Atomic functions

The following functions are primitive recursive and μ-recursive:
The constant null

$$
0: \mathbb{N}^{0} \rightarrow \mathbb{N} \text { with } 0()=0
$$

Successor function

$$
+1: \mathbb{N}^{1} \rightarrow \mathbb{N} \text { with }+1(n)=n+1 \text { for all } n \in \mathbb{N}
$$

Recursive functions: Atomic functions

The following functions are primitive recursive and μ-recursive:
The constant null

$$
0: \mathbb{N}^{0} \rightarrow \mathbb{N} \text { with } 0()=0
$$

Successor function

$$
+1: \mathbb{N}^{1} \rightarrow \mathbb{N} \text { with }+1(n)=n+1 \text { for all } n \in \mathbb{N}
$$

Projection function

$$
\pi_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N} \text { with } \pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
$$

Recursive functions

Notation:

We will write \mathbf{n} for the tuple $\left(n_{1}, \ldots, n_{k}\right), k \geq 0$.

Recursive functions: Composition

Composition:
If the functions: $\quad g: \mathbb{N}^{r} \rightarrow \mathbb{N}$

$$
r \geq 1
$$

$$
h_{1}: \mathbb{N}^{k} \rightarrow \mathbb{N}, \ldots, h_{r}: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad k \geq 0
$$

are primitive recursive resp. μ-recursive, then

$$
f: \mathbb{N}^{k} \rightarrow \mathbb{N}
$$

defined for every $\mathbf{n} \in \mathbb{N}^{k}$ by:

$$
f(\mathbf{n})=g\left(h_{1}(\mathbf{n}), \ldots, h_{r}(\mathbf{n})\right)
$$

is also primitive recursive resp. μ-recursive.

Notation without arguments: $f=g \circ\left(h_{1}, \ldots, h_{r}\right)$

Primitive recursive functions

Until now:

- Atomic functions (Null, Successor, Projections)
- Composition

Next:

- Primitive recursion

Definition of primitive recursive functions

Primitive recursive functions

Primitive recursion

If the functions

$$
\begin{aligned}
& g: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad(k \geq 0) \\
& h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}
\end{aligned}
$$

are primitive recursive, then the function

$$
\begin{aligned}
f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \text { with } \quad & f(\mathbf{n}, 0)=g(\mathbf{n}) \\
& f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))
\end{aligned}
$$

is also primitive recursive.

Primitive recursive functions

Primitive recursion

If the functions

$$
\begin{array}{ll}
g: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad(k \geq 0) \\
h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}
\end{array}
$$

are primitive recursive, then the function

$$
\begin{array}{ll}
f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \text { with } \quad & f(\mathbf{n}, 0)=g(\mathbf{n}) \\
& f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))
\end{array}
$$

is also primitive recursive.

Notation without arguments: $f=\mathcal{P} \mathcal{R}[g, h]$

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

Notation: $\mathcal{P}=$ The set of all primitive recursive functions

Arithmetical functions: definitions

$$
\begin{aligned}
& f(n)=n+c \\
& f(n)=n \\
& f(n, m)=n+m \\
& f(n)=n-1 \\
& f(n, m)=n-m \\
& f(n, m)=n * m
\end{aligned}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f(n)=\underbrace{(+1)(\ldots((+1)}_{c \text { times }}(n)))
$$

Arithmetical functions: definitions

$$
\begin{aligned}
& f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0 \\
& \qquad f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
\end{aligned}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f: \mathbb{N} \rightarrow \mathbb{N}, \text { with } f(n)=n
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

$f(n, m)=n+m$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

$$
\begin{aligned}
& f(n, m)=n+m \\
& \quad f(n, 0)=n \\
& \quad f(n, m+1)=(+1)(f(n, m))
\end{aligned}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

$f(n, m)=n+m$

$$
\begin{array}{lll}
f(n, 0)=n & g(n)=n & g=\pi_{1}^{1} \\
f(n, m+1)=(+1)(f(n, m)) & h(n, m, k)=+1(k) & h=(+1) \circ \pi_{3}^{3}
\end{array}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

$f(n, m)=n+m$

$$
\begin{array}{cll}
f(n, 0)=n & g(n)=n & g=\pi_{1}^{1} \\
f(n, m+1)=(+1)(f(n, m)) & h(n, m, k)=+1(k) & h=(+1) \circ \pi_{3}^{3} \\
& f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(+1) \circ \pi_{3}^{3}\right] &
\end{array}
$$

Arithmetical functions: definitions

$$
f(n)=n+c, \quad \text { for } c \in \mathbb{N}, c>0
$$

$$
f=\underbrace{(+1) \circ \cdots \circ(+1)}_{c \text { times }}
$$

Identity

$$
f=\pi_{1}^{1}
$$

$f(n, m)=n+m$

$$
f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(+1) \circ \pi_{3}^{3}\right]
$$

Arithmetical functions: definitions

$$
f(n)=n-1
$$

Arithmetical functions: definitions

$$
\begin{aligned}
& f(n)=n-1 \\
& f(0)=0 \\
& f(n+1)=n
\end{aligned}
$$

Arithmetical functions: definitions

$$
f(n)=n-1
$$

$$
\begin{array}{lll}
f(0)=0 & g()=0 & g=0 \\
f(n+1)=n & h(n, k)=n & h=\pi_{1}^{2}
\end{array}
$$

$$
f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right]
$$

Arithmetical functions: definitions

$$
\begin{array}{ll}
f(n)=n-1 & f=\mathcal{P \mathcal { R }}\left[0, \pi_{1}^{2}\right] \\
f(n, m)=n-m &
\end{array}
$$

Arithmetical functions: definitions

$$
\begin{array}{lll}
f(n)=n-1 & \\
& f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right] \\
f(n, m)=n-m & & \\
f(n, 0)=n & g(n)=n & g=\pi_{1}^{1} \\
f(n, m+1)=f(n, m)-1 & h(n, m, k)=k-1 & h=(-1) \circ \pi_{3}^{3} \\
& \\
& f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(-1) \circ \pi_{3}^{3}\right]
\end{array}
$$

Arithmetical functions: definitions

$$
f(n)=n-1
$$

$$
f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right]
$$

$f(n, m)=n-m$

$$
f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(-1) \circ \pi_{3}^{3}\right]
$$

$f(n, m)=n * m$

Arithmetical functions: definitions

$$
\begin{aligned}
& f(n)=n-1 \\
& f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right] \\
& f(n, m)=n-m \\
& f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(-1) \circ \pi_{3}^{3}\right] \\
& f(n, m)=n * m \\
& \begin{array}{lll}
f(n, 0)=0 & g(n)=0 & g=0 \\
f(n, m+1)=f(n, m)+n & h(n, m, k)=k+n & h=+\circ\left(\pi_{3}^{3}, \pi_{1}^{3}\right)
\end{array} \\
& f=\mathcal{P} \mathcal{R}\left[0,+\circ\left(\pi_{3}^{3}, \pi_{1}^{3}\right)\right]
\end{aligned}
$$

Arithmetical functions: definitions

$$
f(n)=n-1
$$

$$
f=\mathcal{P} \mathcal{R}\left[0, \pi_{1}^{2}\right]
$$

$f(n, m)=n-m$

$$
f=\mathcal{P} \mathcal{R}\left[\pi_{1}^{1},(-1) \circ \pi_{3}^{3}\right]
$$

$f(n, m)=n * m$

$$
f=\mathcal{P} \mathcal{R}\left[0,+\circ\left(\pi_{3}^{3}, \pi_{1}^{3}\right)\right]
$$

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

- Re-ordering
- Omitting
- Repeating
of arguments when composing functions.

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

- Re-ordering
- Omitting
- Repeating
of arguments when composing functions.

Proof: (Idea)
A tuple of arguments $\mathbf{n}^{\prime}=\left(n_{i_{1}}, \ldots, n_{i_{k}}\right)$ obtained from $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$ by re-ordering, omitting or repeating components can be represented as:

$$
\mathbf{n}^{\prime}=\left(\pi_{i_{1}}^{k}(\mathbf{n}), \ldots, \pi_{i_{k}}^{k}(\mathbf{n})\right)
$$

Additional Arguments

Lemma. Assume $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is primitive recursive.
Then, for every $p \in \mathbb{N}$, the function $f^{\prime}: \mathbb{N}^{k} \times \mathbb{N}^{p} \rightarrow \mathbb{N}$ defined for every $\mathbf{n} \in \mathbb{N}^{k}$ and every $\mathbf{m} \in \mathbb{N}^{p}$ by:

$$
f^{\prime}(\mathbf{n}, \mathbf{m})=f(\mathbf{n})
$$

is primitive recursive.

Additional Arguments

Lemma. Assume $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is primitive recursive.
Then, for every $p \in \mathbb{N}$, the function $f^{\prime}: \mathbb{N}^{k} \times \mathbb{N}^{p} \rightarrow \mathbb{N}$ defined for every $\mathbf{n} \in \mathbb{N}^{k}$ and every $\mathbf{m} \in \mathbb{N}^{p}$ by:

$$
f^{\prime}(\mathbf{n}, \mathbf{m})=f(\mathbf{n})
$$

is primitive recursive.

Proof:

Case 1: $k=0$, i.e. f is a constant. Then $f^{1}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ with $f^{1}(\mathbf{n}, m)=f(\mathbf{n})$ for all $m \in \mathbb{N}$ can be expressed by primitive recursion as follows:

$$
\begin{aligned}
& f^{1}(0)=f \\
& f^{1}(n+1)=f^{1}(n)=\pi_{2}^{2}\left(n, f^{1}(n)\right)
\end{aligned}
$$

$$
f^{1}=\mathcal{P} \mathcal{R}\left[f, \pi_{2}^{2}\right]
$$

By iterating this construction p times we obtain extensions $f^{2}, f^{3}, \ldots, f^{p}$ with $2,3, \ldots p$ additional arguments. The function f^{\prime} is f^{p}.

Case 2: $k \neq 0$. Let $\mathbf{n}=\left(n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{p}\right)$
Then $f^{\prime}(\mathbf{n})=f\left(\pi_{1}^{k+p}(\mathbf{n}), \ldots, \pi_{k}^{k+p}(\mathbf{n})\right)=f \circ\left(\pi_{1}^{k+p}, \ldots, \pi_{k}^{k+p}\right)$.

Case distinction

Lemma (Case distinction is primitive recursive)
If $-g_{i}, h_{i}(1 \leq i \leq r)$ are primitive recursive functions, and

- for every n there exists a unique i with $h_{i}(n)=0$ then the function f defined by:

$$
f(n)= \begin{cases}g_{1}(n) & \text { if } h_{1}(n)=0 \\ \cdots & \\ g_{r}(n) & \text { if } h_{r}(n)=0\end{cases}
$$

is primitive recursive.

Case distinction

Lemma (Case distinction is primitive recursive)
If $\bullet g_{i}, h_{i}(1 \leq i \leq r)$ are primitive recursive functions, and

- for every n there exists a unique i with $h_{i}(n)=0$ then the function f defined by:

$$
f(n)= \begin{cases}g_{1}(n) & \text { if } h_{1}(n)=0 \\ \cdots & \\ g_{r}(n) & \text { if } h_{r}(n)=0\end{cases}
$$

is primitive recursive.

Proof: $f(n)=g_{1}(n) *\left(1-h_{1}(n)\right)+\cdots+g_{r}(n) *\left(1-h_{r}(n)\right)$

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Proof: f_{1} and f_{2} can be written using primitive recursion and case distinction:

$$
\begin{aligned}
& f_{1}(\mathbf{n}, 0)=0 \\
& f_{1}(\mathbf{n}, m+1)=f_{1}(\mathbf{n}, m)+g(\mathbf{n}, m)
\end{aligned}
$$

Sums and products

Theorem

If $g: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is a primitive recursive function then the following functions $f_{1}, f_{2}: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ are also primitive recursive:

Proof: f_{1} and f_{2} can be written using primitive recursion and case distinction:

$$
\begin{array}{l|l}
f_{1}(\mathbf{n}, 0)=0 & f_{2}(\mathbf{n}, 0)=1 \\
f_{1}(\mathbf{n}, m+1)=f_{1}(\mathbf{n}, m)+g(\mathbf{n}, m) & f_{2}(\mathbf{n}, m+1)=f_{2}(\mathbf{n}, m) * g(\mathbf{n}, m)
\end{array}
$$

