Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (3)
15.12.2021

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions

$$
\mapsto \mathcal{P}
$$

- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Primitive recursive functions

Definition (Primitive recursive functions)

- Atomic functions: The functions
- Null 0
- Successor +1
- Projection $\pi_{i}^{k} \quad(1 \leq i \leq k)$
are primitive recursive.
- Composition: The functions obtained by composition from primitive recursive functions are primitive recursive.
- Primitive recursion: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

The set of all primitive recursive functions is the smallest set with the properties above.
Notation: $\mathcal{P}=$ The set of all primitive recursive functions

Bounded μ operator

Definition. Let $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ be a function.
The bounded μ operator is defined as follows:

$$
\mu_{i<m} i(g(\mathbf{n}, i)=0):= \begin{cases}i_{0} & \text { if } g\left(\mathbf{n}, i_{0}\right)=0, \quad i_{0}<m \\ \text { and for all } j<i_{0} \quad g(\mathbf{n}, j) \neq 0 \\ 0 & \text { if } g(\mathbf{n}, j) \neq 0 \text { for all } 0 \leq j<m \\ \text { or } m=0\end{cases}
$$

$\mu_{i<m} i(g(\mathbf{n}, i)=0)$ is the smallest $i<m$ such that $g(\mathbf{n}, i)=0$

Theorem. If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a primitive recursive function then the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ defined below is also primitive recursive.

$$
f(\mathbf{n}, m)=\mu_{i<m} i(g(\mathbf{n}, i)=0)
$$

Prime number functions

Theorem: The following functions are primitive recursive:
(1) The Boolean function $\mid: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\left\lvert\,(n, m)= \begin{cases}1 & \text { if } n \text { divides } m \\ 0 & \text { otherwise }\end{cases}\right.
$$

(2) The Boolean function prime $: \mathbb{N} \rightarrow\{0,1\}$ defined by:

$$
\operatorname{prime}(n)= \begin{cases}1 & \text { if } n \text { prime } \\ 0 & \text { otherwise }\end{cases}
$$

(3) The function $p: \mathbb{N} \rightarrow \mathbb{N}$ defined by: $p(n)=p_{n}$, the n-th prime number.
(4) The function $D: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by: $D(n, i)=k$ iff k is the power of the i-th prime number in the prime number decomposition of n.

$$
D(n, i)=\max \left(\left\{j \mid n \bmod p(i)^{j}=0\right\}\right)
$$

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions
- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

Goal

Show that $\mathcal{P}=$ LOOP

Idea:

To show that $\mathcal{P} \supseteq$ LOOP we have to show that every LOOP computable function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one natural number (used as input for this primitive recursive function).
For this encoding we will use Gödelisation. We will need to show that Gödelisation is primitive recursive.

To show that $\mathcal{P} \subseteq$ LOOP we have to show that:

- all atomic primitive recursive functions are LOOP computable, and
- LOOP is closed under composition of functions and primitive recursion.

Gödelisation

To show: Gödelisierung is primitive recursive
Informally:

- Coding number sequences as a number
- Corresponding decoding function (projection)
are primitiv recursive

More precise formulation:
There exist primitive recursive functions

$$
\begin{array}{ll}
K^{r}: \mathbb{N}^{r} \rightarrow \mathbb{N} & (r \geq 1) \\
D_{i}: \mathbb{N} \rightarrow \mathbb{N} & (1 \leq i \leq r)
\end{array}
$$

with:

$$
D_{i}\left(K^{r}\left(n_{1}, \ldots, n_{r}\right)\right)=n_{i}
$$

Gödelisation

To show: Gödelisation is primitive recursive
Informally:

- Coding number sequences as a number
- Corresponding decoding function (projection)
are primitive recursive
Recall:
Gödelisation: Coding number sequences as a number
Bijection K between $\bigcup_{r \in \mathbb{N}} \mathbb{N}^{r}$ and \mathbb{N} :
$K^{r}: \mathbb{N}^{r} \rightarrow \mathbb{N}$, defined by:

$$
K^{r}\left(n_{1}, \ldots, n_{r}\right)=\prod_{i=1}^{r} p(i)^{n_{i}} .
$$

$n \in \mathbb{N}^{r} \mapsto K(n)=K_{r}(n)$
Decoding: The inverses $D_{i}: \mathbb{N} \rightarrow \mathbb{N}$ of K^{r} defined by $D_{i}(n)=D(n, i)$

Gödelisation

Bijection K between $\bigcup_{r \in \mathbb{N}} \mathbb{N}^{r}$ and \mathbb{N} :
$K^{r}: \mathbb{N}^{r} \rightarrow \mathbb{N}$, defined by:

$$
K^{r}\left(n_{1}, \ldots, n_{r}\right)=\prod_{i=1}^{r} p(i)^{n_{i}}
$$

$n \in \mathbb{N}^{r} \mapsto K(n)=K_{r}(n)$
$D_{i}: \mathbb{N} \rightarrow \mathbb{N}, 1 \leq i \leq r$, defined by $D_{i}(n)=D(n, i)$
Theorem. K^{r} and D_{1}, \ldots, D_{r} are primitive recursive.

Lemma.

(1) $D_{i}\left(K^{r}\left(n_{1}, \ldots, n_{r}\right)\right)=n_{i} \quad$ for all $1 \leq i \leq r$.
(2) $K^{r}\left(n_{1}, \ldots, n_{r}\right)=K^{r+1}\left(n_{1}, \ldots, n_{r}, 0\right)$

In general, $D_{i}\left(K^{r}\left(n_{1}, \ldots, n_{r}\right)\right)=0$ if $i>r$.

Gödelisation

Notation:

$$
\begin{aligned}
K^{r}\left(n_{1}, \ldots, n_{r}\right) & =\left\langle n_{1}, \ldots, n_{r}\right\rangle \\
D_{i}(n) & =(n)_{i}
\end{aligned}
$$

For $r=0$:
$\rangle=1$
$\left(\rangle)_{i}=0\right.$

Gödelisation: Applications

$$
\begin{aligned}
& \text { Theorem (Simultaneous Recursion) } \\
& \text { If } \\
& f_{1}(\mathbf{n}, 0)=g_{1}(\mathbf{n}) \\
& f_{r}(\mathbf{n}, 0)=g_{r}(\mathbf{n}) \\
& f_{1}(\mathbf{n}, m+1)=h_{1}\left(\mathbf{n}, m, f_{1}(\mathbf{n}, m), \ldots, f_{r}(\mathbf{n}, m)\right) \\
& \text {.. } \\
& f_{r}(\mathbf{n}, m+1)=h_{r}\left(\mathbf{n}, m, f_{1}(\mathbf{n}, m), \ldots, f_{r}(\mathbf{n}, m)\right)
\end{aligned}
$$

and if $g_{1}, \ldots, g_{r}, h_{1}, \ldots, h_{r}$ are primitive recursive
then f_{1}, \ldots, f_{r} are primitive recursive.

Example

Let f_{1} and f_{2} be defined by simultaneous recursion as follows:

$$
\begin{aligned}
f_{1}(0) & =0 \\
f_{2}(0) & =1 \\
f_{1}(n+1) & =f_{2}(n) \\
f_{2}(n+1) & =f_{1}(n)+f_{2}(n)
\end{aligned}
$$

Example

Let f_{1} and f_{2} be defined by simultaneous recursion as follows:

$$
\begin{aligned}
f_{1}(0) & =0 & & g_{1}=0 \\
f_{2}(0) & =1 & & g_{2}=1 \\
& & & \\
f_{1}(n+1) & =f_{2}(n) & & h_{1}\left(n, f_{1}(n), f_{2}(n)\right)=f_{2}(n) \\
f_{2}(n+1) & =f_{1}(n)+f_{2}(n) & & h_{2}\left(n, f_{1}(n), f_{2}(n)\right)=f_{1}(n)+f_{2}(n)
\end{aligned} h_{1}=h_{2}^{3}=+\circ\left(\pi_{2}^{3}, \pi_{3}^{3}\right)
$$

Gödelisation: Applications

$$
\begin{aligned}
& \text { Theorem (Simultaneous Recursion) } \\
& \text { If } \\
& f_{1}(\mathbf{n}, 0)=g_{1}(\mathbf{n}) \\
& f_{r}(\mathbf{n}, 0)=g_{r}(\mathbf{n}) \\
& f_{1}(\mathbf{n}, m+1)=h_{1}\left(\mathbf{n}, m, f_{1}(\mathbf{n}, m), \ldots, f_{r}(\mathbf{n}, m)\right) \\
& f_{r}(\mathbf{n}, m+1)=h_{r}\left(\mathbf{n}, m, f_{1}(\mathbf{n}, m), \ldots, f_{r}(\mathbf{n}, m)\right)
\end{aligned}
$$

and if $g_{1}, \ldots, g_{r}, h_{1}, \ldots, h_{r}$ are primitive recursive
then f_{1}, \ldots, f_{r} are primitive recursive.

Gödelisation: Applications

Proof: We define a new function f by:

$$
f(\mathbf{n}, m)=\left\langle f_{1}(\mathbf{n}, m), \ldots, f_{r}(\mathbf{n}, m)\right\rangle
$$

f can be computed by primitive recursion as follows:

$$
\begin{aligned}
f(\mathbf{n}, 0)= & \left\langle g_{1}(\mathbf{n}), \ldots, g_{r}(\mathbf{n})\right\rangle \\
f(\mathbf{n}, m+1)= & \left\langle h_{1}\left(\mathbf{n}, m,(f(\mathbf{n}, m))_{1}, \ldots,(f(\mathbf{n}, m))_{r}\right), \ldots,\right. \\
& \left.h_{r}\left(\mathbf{n}, m,(f(\mathbf{n}, m))_{1}, \ldots,(f(\mathbf{n}, m))_{r}\right)\right\rangle
\end{aligned}
$$

$K^{r} \circ\left(g_{1}, \ldots, g_{r}\right)$ and $K^{r} \circ\left(h_{1}, \ldots, h_{r}\right)$ are primitive recursive.

For all $1 \leq i \leq r, f_{i}(\mathbf{n}, m)=D_{i}(f(\mathbf{n}, m))$.
Since $f_{i}=D_{i} \circ f$ is primitive recursive, it follows that f_{i} is primitive recursive for all $1 \leq i \leq r$.

Goal

Show that $\mathcal{P}=$ LOOP

Idea:

To show that $\mathcal{P} \supseteq$ LOOP we have to show that every LOOP computable function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one natural number (used as input for this primitive recursive function).

For this encoding we use Gödelisation. We showed that Gödelisation is primitive recursive.

To show that $\mathcal{P} \subseteq$ LOOP we have to show that:

- all atomic primitive recursive functions are LOOP computable, and
- LOOP is closed under composition of functions and primitive recursion.

$\mathcal{P}=$ LOOP

Theorem ($\mathcal{P}=$ LOOP). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. $\mathcal{P} \subseteq \mathrm{LOOP}$

$\mathcal{P}=$ LOOP

Theorem ($\mathcal{P}=$ LOOP). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. $\mathcal{P} \subseteq \mathrm{LOOP}$

1a: We show that all atomic primitive recursive functions are LOOP computable

1b: We show that LOOP is closed under composition of functions
1 c : We show that LOOP is closed under primitive recursion

$\mathcal{P}=$ LOOP

Theorem ($\mathcal{P}=$ LOOP). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. $\mathcal{P} \subseteq \mathrm{LOOP}$

1a: All atomic primitive recursive functions are LOOP computable

$$
\begin{array}{rll}
0: & \mathrm{x}_{1}:=\mathrm{x}_{1}-1 & / / N O P \\
+1: & \mathrm{x}_{2}:=\mathrm{x}_{1}+1 \\
\pi_{j}^{k} & \mathrm{x}_{\mathrm{k}+1}:=\mathrm{x}_{\mathrm{j}}
\end{array}
$$

$\mathcal{P}=$ LOOP

Proof (ctd) 1b: LOOP is closed under composition of functions
Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ with $f(\mathbf{n})=h\left(g_{1}(\mathbf{n}), \ldots, g_{r}(\mathbf{n})\right)$
Assume that:

- P_{h} computes h
- $P_{g_{j}}$ computes $g_{j} \quad(1 \leq j \leq r)$

Idea: f is computed by the program P_{f} :

$$
P_{g_{1}}^{\prime} ; \ldots ; P_{g_{r}}^{\prime} ; P_{h}^{\prime}
$$

where $P_{g_{i}}^{\prime}$ differs from $P_{g_{i}}$ (and P_{h}^{\prime} from P_{h}) only up to the fact that registers have been renamed/the contents stored in them copied.

$\mathcal{P}=$ LOOP

Proof (ctd) 1b: LOOP is closed under composition of functions
Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ with $f(\mathbf{n})=h\left(g_{1}(\mathbf{n}), \ldots, g_{r}(\mathbf{n})\right.$
Assume that:

- P_{h} computes h
- $P_{g_{j}}$ computes $g_{j} \quad(1 \leq j \leq r)$

More precisely: $P_{g_{i}}^{\prime}$: obtained from $P_{g_{i}}$ by renaming register x_{k+i} to x_{k+r+i}. \mapsto keep free registers x_{k+1}, \ldots, x_{k+r} for writing result of $P_{g_{1}}, \ldots, P_{g_{r}}$ P_{h}^{\prime} : obtained from P_{h} by renaming x_{j} to x_{k+j}.

$$
\begin{aligned}
P_{f}: & P_{g_{1}}^{\prime} ; x_{k+1}:=x_{k+r+1} ; x_{k+r+1}:=0 ; \ldots \\
& P_{g_{r}^{\prime}}^{\prime} ; x_{k+r}:=x_{k+r+1} ; x_{k+r+1}:=0 ; \\
& P_{h}^{\prime} ; x_{k+1}:=x_{k+r+1} ; x_{k+2}:=0 ; \ldots ; x_{k+r+1}:=0
\end{aligned}
$$

$\mathcal{P}=$ LOOP

Proof (ctd) 1c: LOOP is closed under primitive recursion
Assume that $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is such that:

$$
f(\mathbf{n}, 0)=g(\mathbf{n})
$$

$f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))$
Then f is computed by the following LOOP Program:

```
\(x_{\text {store }_{\mathrm{m}}}:=x_{k+1} ;\)
\(x_{k+1}:=0\);
\(P_{g}^{\prime}\);
loop \(x_{\text {store }_{m}}\) do
        \(P_{h}\);
        \(x_{k+2}:=x_{k+2+1} ;\)
        \(x_{k+2+1}:=0\);
        \(x_{k+1}:=x_{k+1}+1\)
end;
\(x_{\text {store }_{\mathrm{m}}}:=0\)
```


$\mathcal{P}=$ LOOP

Proof (ctd) 1c: LOOP is closed under primitive recursion

Assume that $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is such that:

$$
f(\mathbf{n}, 0)=g(\mathbf{n})
$$

$f(\mathbf{n}, m+1)=h(\mathbf{n}, m, f(\mathbf{n}, m))$
Then f is computed by the following LOOP Program:

```
\(x_{\text {store }_{\mathrm{m}}}:=x_{k+1} ;\)
\(x_{k+1}:=0\);
\(P_{g}^{\prime}\);
loop \(x_{\text {store }_{m}}\) do
        \(P_{h}\);
        \(x_{k+2}:=x_{k+2+1} ;\)
        \(x_{k+2+1}:=0\);
        \(x_{k+1}:=x_{k+1}+1\)
end;
\(x_{\text {store }_{\mathrm{m}}}:=0\)
```

// Number of loops (m)
/ Actual value of m (at the beginning 0)
$/ /$ Computes $f(n, 0)$; result in x_{k+2}

$\mathcal{P}=$ LOOP

Theorem ($\mathcal{P}=$ LOOP). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)
2. $\mathrm{LOOP} \subseteq \mathcal{P}$

Let P be a LOOP program which:

- uses registers x_{1}, \ldots, x_{l}
- has m loop instructions

We construct a primitive recursive function f_{P} which "simulates" P

$$
f_{P}\left(\left\langle n_{1}, \ldots, n_{l}, h_{1}, \ldots, h_{m}\right\rangle\right)=\left\langle n_{1}^{\prime}, \ldots, n_{l}^{\prime}, h_{1}, \ldots, h_{m}\right\rangle
$$

if and only if:
P started with n_{i} in register x_{i} terminates with n_{i}^{\prime} in $x_{i}(1 \leq i \leq I)$.
In h_{j} it is "recorded" how long loop j should still run.

$\mathcal{P}=$ LOOP

Proof (ctd)
At the beginning and at the end of the simulation of P we have

$$
h_{1}=0, \ldots, h_{m}=0
$$

Assume that we can construct a primitive recursive function f_{P} which "simulates" P, i.e. $f_{P}\left(\left\langle n_{1}, \ldots, n_{l}, h_{1}, \ldots, h_{m}\right\rangle\right)=\left\langle n_{1}^{\prime}, \ldots, n_{l}^{\prime}, h_{1}, \ldots, h_{m}\right\rangle$ if and only if:
P started with n_{i} in register x_{i} terminates with n_{i}^{\prime} in $x_{i}(1 \leq i \leq I)$.

The function computed by the LOOP program P is then primitive recursive, since:

$$
g\left(n_{1}, \ldots, n_{l}\right)=g\left(n_{1}, \ldots, n_{k}, 0, \ldots, 0\right)=\left(f_{P}\left(\left\langle n_{1}, \ldots, n_{l}, 0,0, \ldots\right\rangle\right)\right)_{k+1}
$$

(the input in registers x_{1}, \ldots, x_{k}, all other registers contain 0 , output in register x_{k+1}

$\mathcal{P}=$ LOOP

Proof (ctd) Construction of f_{P} :

2a: P is $x_{i}:=x_{i}+1$

$$
\begin{aligned}
& \quad f_{P}(n)=\left\langle(n)_{1}, \ldots,(n)_{i-1},(n)_{i}+1,(n)_{i+1}, \ldots\right\rangle=n * p(i) \\
& P \text { is } x_{i}:=x_{i}-1
\end{aligned}
$$

$$
f_{P}(n)=\left\langle(n)_{1}, \ldots,(n)_{i-1},(n)_{i}-1,(n)_{i+1}, \ldots\right\rangle
$$

$$
f_{P}(n)= \begin{cases}n & D(n, i)=0 \\ n \text { DIV p(i) } & \text { otherwise }\end{cases}
$$

$\mathcal{P}=$ LOOP

Proof (ctd) Construction of f_{P} :

2a: P is $x_{i}:=x_{i}+1$

$$
f_{P}(n)=\left\langle(n)_{1}, \ldots,(n)_{i-1},(n)_{i}+1,(n)_{i+1}, \ldots\right\rangle
$$

$$
P \text { is } x_{i}:=x_{i}-1
$$

$$
f_{P}(n)=\left\langle(n)_{1}, \ldots,(n)_{i-1},(n)_{i}-1,(n)_{i+1}, \ldots\right\rangle
$$

2b: P is $P_{1} ; P_{2}$

$$
f_{P}=f_{P_{2}} \circ f_{P_{1}} \quad \text { i.e. } f_{P}(n)=f_{P_{2}}\left(f_{P_{1}}(n)\right)
$$

$\mathcal{P}=$ LOOP

Proof (ctd) Construction of f_{P} :

2c: P is loop x_{i} do P_{1} end
Let $f_{P_{1}}$ be the p.r. function which computes what P_{1} computes.
Initialize the j-th loop:

$$
f_{1}(n)=\left\langle(n)_{1}, \ldots,(n)_{I},(n)_{I+1}, \ldots(n)_{I+j-1},(n)_{i},(n)_{I+j+1}, \ldots\right\rangle
$$

Let the j-th loop run:

$$
f_{2}(n)= \begin{cases}n & \text { if }(n)_{l+j}=0 \\ f_{P_{1}}\left(f_{2}\left(\left\langle\ldots,(n)_{l+j}-1, \ldots\right\rangle\right)\right) & \text { otherwise }\end{cases}
$$

Then:

$$
f_{P}(n)=f_{2}\left(f_{1}(n)\right)=\left(f_{2} \circ f_{1}\right)(n)
$$

$\mathcal{P}=$ LOOP

Proof (ctd) Construction of f_{P} :

2c: P is loop x_{i} do P_{1} end
Let $f_{P_{1}}$ be the p.r. function which computes what P_{1} computes.
Initialize the j-th loop:

$$
f_{1}(n)=\left\langle(n)_{1}, \ldots,(n)_{I},(n)_{I+1}, \ldots(n)_{l+j-1},(n)_{i},(n)_{I+j+1}, \ldots\right\rangle
$$

$f_{1}(n)=n * p(I+j)^{(n)_{i}} . \quad$ if $(n)_{I+j}=0$ before the loop is executed
Let the j-th loop run:

$$
f_{2}(n)= \begin{cases}n & \text { if }(n)_{I+j}=0 \\ f_{P_{1}}\left(f_{2}(n D I V p(I+j))\right) & \text { otherwise }\end{cases}
$$

Then:

$$
f_{P}=f_{2} \circ f_{1}
$$

$\mathcal{P}=$ LOOP

Proof (ctd) We show that f_{2} is primitive recursive.
Let $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined by:
$F(n, 0)=n$
$F(n, m+1)=f_{P_{1}}(F(n, m))$

Then $F \in \mathcal{P}$.
It can be checked that $f_{2}(n)=F(n, D(n, I+j))$. Therefore, $f_{2} \in \mathcal{P}$.

Since f_{1}, f_{2} are primitive recursive, so is $f_{P}=f_{2} \circ f_{1}$.

3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions

$$
\mapsto \mathcal{P}
$$

- $\mathcal{P}=\mathrm{LOOP}$
- μ-recursive functions
$\mapsto F_{\mu}$
- $F_{\mu}=$ WHILE
- Summary

