
Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (4)

22.12.2021

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2



3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

3



Now

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

4



µ-recursive Functions

Definition (µ Operator)

f (n) = µi(g(n, i) = 0) =



























i0 if g(n, i0) = 0

and for all 0 ≤ j < i0

g(n, j) defined and 6= 0

undefined otherwise

The smallest i such that g(n, i) = 0 (undefined if no such i exists or when

g is undefined before taking the value 0)

5



µ-recursive Functions

Notation:

f (n) = µi(g(n, i) = 0)

... without arguments:

f = µg

6



µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i

(1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive functions are µ-recursive.

7



µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i

(1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive functions are µ-recursive.

8



µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i

(1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive functions are µ-recursive.

9



µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i

(1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive functions are µ-recursive.

10



µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i

(1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive functions are µ-recursive.

11



µ-recursive Functions

Notation:

Fµ = Set of all total µ-recursive functions

F
part
µ = Set of all µ-recursive functions

(total and partial)

12



µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

13



µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea)

We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program.

14



µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea) We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program (below: informal notation)

i := 0;

while g(n, i) 6= 0 do i := i + 1 end

15



µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea) We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program (below: informal notation)

i := 0;

while g(n, i) 6= 0 do i := i + 1 end

It can happen that the µ operator is applied to a partial function:

• g(n, j) might be undefined for some j before a value i is found for which

g(n, i) = 0

• g(n, i) is defined for all i but is never 0.

The µ operator is defined s.t. in such cases it behaves exactly like the while program.

16



µ-recursive Functions

Question:

Are there µ-recursive functions which are not primitive recursive?

17



Ackermann Funktion

Wilhelm Ackermann (1896–1962)

• Mathematician and logician

• PhD advisor: D. Hilbert

Co-author of Hilbert’s Book:

“Grundzüge der Theoretischen Logik”

• Mathematics teacher, Lüdenscheid

18



µ-recursive Functions

Definition: Ackermann function A

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

Ack(x) = A(x , x)

19



µ-recursive Functions

Definition: Ackermann function A

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

Ack(x) = A(x , x)

x y 0 1 2 3 4 . . . n

0 0+1=1 1+1=2 2+1=3 3+1=4 4+1=5 n + 1

1 A(0, 1)=2 A(0, A(1, 0))=3 A(0, A(1, 1))=4 A(0, A(1, 2))=5 A(0, A(1, 3))=6 n+2

2 A(1, 1)=3 A(1, A(2, 0))=5 A(1, A(2, 1))=7 A(1, A(2, 2))=9 A(1, A(2, 3))=11 2n+3

3 A(2, 1)=5 A(2, A(3, 0))=13 A(2, A(3, 1))=29 A(2, A(3, 2))=61 A(2, A(3, 3))=125 2n+3
−3

4 A(3, 1) A(3, A(4, 0)) A(3, A(4, 1)) A(3, A(4, 2)) A(3, A(4, 3)) 2
2...2

2

︸ ︷︷ ︸

n+3

−3

= 22
2

− 3 = 22
22

−3 = 22
22

2

−3 = 22
22

22

−3 = 22
265536

−3

= 13 = 65533

. . .

20



µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

21



µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: The Ackermann function is total. (In every recursion step one of the

arguments is smaller.)

We show that Ack is µ-recursive. Idea of proof:

Ack is TM-computable: We can store the recursion stack on the tape of a

TM.

We will show that Fµ = WHILE and that TM ⊆ Fµ

From this it will follow that Ack is µ-recursive.

22



µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: Ack is not primitive recursive. Idea of proof:

For a primitive recursive function f , the depth of function unwind needed

to compute f (n) is the same for all n. But Ack cannot be computed with

constant unwind depth. (The detailed proof is complicated.)

23



µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: Ack is not primitive recursive. Idea of proof:

For a primitive recursive function f , the depth of function unwind needed

to compute f (n) is the same for all n. But Ack cannot be computed with

constant unwind depth. (The detailed proof is complicated.)

Alternative proof: We can show that the Ackermann function grows faster

than all p.r. functions. (Proof by structural induction)

24



3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

25



3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

26



Overview

We know that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO ( WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

In this section we proved:

• LOOP = P

• Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Still to show:

• TM ⊆ Fµ

• TMpart ⊆ F
part
µ

27



TM revisited

(1) Gödelisation of Turing machines

We can associate with every TM

M = (K , Σ, δ, s)

a unique Gödel number

〈M〉 ∈ N

such that

• the coding function (computing 〈M〉 from M)

• the decoding function (computing the components of M from 〈M〉)

are primitive recursive

28



TM revisited

(2) Gödelisation of configurations of Turing machines

We can associate with every configuration of a given TM

C : q,wau

a unique Gödel number

〈C〉 ∈ N

such that

• the coding function (computing 〈C〉 from the components of the

configuration C)

• the decoding function (computing the components of C from 〈C〉) are

primitive recursive

29



The Simulation Lemma

Lemma (Simulation Lemma)

There exists a primitive recursive function

fU : N3 → N

such that for every Turing machine M the following hold:

If C0, . . . ,Ct are configurations of M (where t ≥ 0) with

Ci ⊢M Ci+1 (0 ≤ i < t)

then:

fU(〈M〉 , 〈C0〉 , t) = 〈Ct〉

30



The Simulation Lemma

Proof. (Idea)

• The coding/decoding functions for TM and configurations are primitive

recursive

• Every single step of a TM is primitive recursive

• A given number t of steps in a TM is primitive recursive

Therefore, fU is primitive recursive.

(Detailed, constructive proof in which the functions are explicitly given: 4

pages in [Erk, Priese])

31



TM computable functions are µ-recursive

Theorem Every TM computable function is µ-recursive.

TM ⊆ Fµ and TMpart ⊆ F part
µ

Proof (Sketch)

Let f : Nk → N be a TM computable function. Let M be a TM which computes f .

f (n1, . . . , nk ) = nk+1 iff s, # | . . . |
︸ ︷︷ ︸

n1

# . . .# | . . . |
︸ ︷︷ ︸

nk

# ⊢M h, | . . . |
︸ ︷︷ ︸

nk+1

#

Hence: f (n1, . . . , nk ) = (fU( 〈M〉 , start,µi((fU(〈M〉 , start, i))State = 〈h〉) ))w , where:

• start =

〈

s, # | . . . |
︸ ︷︷ ︸

n1

# . . .# | . . . |
︸ ︷︷ ︸

nk

#

〉

• 〈h〉 is the Gödelisation of the end state
• (·)State is the decoding of the state of a configuration
• (·)w is the decoding of the word left to the writing head

µi(g(n, i) = h(n, i)) is an abbreviation for µi((g(n, i)−h(n, i))+(h(n, i)−g(n, i)) = 0)

(smallest i for which g(n, i) = h(n, i))

32



Kleene Normal Form

Corollary (Kleene Normal Form)

For every µ-recursive function f there are primitive recursive functions

g , h such that

f (n) = g(µi(h(n) = 0))

so f = g ◦ µh.

33



Consequence

Fµ = TM = WHILE

34



Summary

Classes of computable functions:

• LOOP = P ⊂ WHILE = GOTO = TM = Fµ

• WHILEpart = GOTOpart = TMpart = F
part
µ

• LOOP 6= TM

35



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

36



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

37



The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the

functions which are Turing computable.

38



The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the

functions which are Turing computable.

Instances of this thesis: all known models of computation

• Turing machines

• Recursive functions

• λ-functions

• all known programming languages (imperative, functional, logic)

provide the same notion of computability

39



Alonzo Church

Alonzo Church (1903-1995)

• studied in Princeton; PhD in Princeton

• Postdoc in Göttingen

• Professor: Princeton and UCLA

• Layed the foundations of theoretical computer

science (e.g. introduced the λ-calculus)

• One of the most important computer scientists

40



Alonzo Church

PhD Students:

• Peter Andrews: automated reasoning

• Martin Davis: Davis-Putnam procedure (automated reasoning)

• Leon Henkin: (Standard) proof of completeness of predicate logic

• Stephen Kleene: Regular expressions

• Dana Scott: Denotational Semantics, Automata theory

• Raymond Smullyan: Tableau calculi

• Alan Turing: Turing machines, Undecidability of the halting problem

• ... and many others

41



Next time

• Recapitulation: Turing machines and Turing computability

• Recursive functions

• Register machines (LOOP, WHILE, GOTO)

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models

42


