Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (4)

22.12.2021

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

— P

Now

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

— P

u-recursive Functions

r N
Definition (©« Operator)

io if g(n,io) =0
and for all 0 < j < g
g(n,j) defined and # 0

\ undefined otherwise

f(n) = pi(g(n, i) =0) = <

The smallest i such that g(n, i) = 0 (undefined if no such i exists or when

g is undefined before taking the value 0)

u-recursive Functions

Notation:
f(n) = pi(g(n, i) = 0)

.. without arguments:

f = ug

u-recursive Functions

Definition (u-recursive Functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)

are [i-recursive.

u-recursive Functions

Definition (u-recursive Functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)
are [i-recursive.

e Composition: The functions obtained by composition from u-
recursive functions are p-recursive.

u-recursive Functions

Definition (u-recursive Functions) A
e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)

are [i-recursive.

e Composition: The functions obtained by composition from u-
recursive functions are p-recursive.

e Primitive recursion: The functions obtained by primitive recursion

from u-recursive functions are u-recursive.

u-recursive Functions

Definition (u-recursive Functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)
are [i-recursive.

e Composition: The functions obtained by composition from u-

recursive functions are p-recursive.

e Primitive recursion: The functions obtained by primitive recursion

from u-recursive functions are u-recursive.

e /1 Operator: The functions obtained by applying the @ operator from

p-recursive functions are p-recursive.

g J

10

u-recursive Functions

Definition (u-recursive Functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wf (1< i< k)
are [i-recursive.

e Composition: The functions obtained by composition from u-

recursive functions are p-recursive.

e Primitive recursion: The functions obtained by primitive recursion

from u-recursive functions are u-recursive.

e [Operator: The functions obtained by applying the @ operator from

p-recursive functions are p-recursive.

g J

11

u-recursive Functions

Notation:
Fp

part
FM

Set of all total u-recursive functions
Set of all u-recursive functions

(total and partial)

12

u-recursive Functions

Theorem.

F., € WHILE and Fﬁart C WHILEP

13

u-recursive Functions

Theorem. F, C WHILE and Fﬁart C WHILEPa't

Proof (ldea)
We already proved that P = LOOP C WHILE.

It remains to show that the © operator can be “implemented” as a WHILE

program.

14

u-recursive Functions

Theorem. F, C WHILE and Fﬁart C WHILEPa't

Proof (Idea) We already proved that P = LOOP C WHILE.

It remains to show that the @ operator can be “implemented” as a WHILE
program (below: informal notation)

I = 0;
while g(n, i) #20 do i:=i+1 end

15

u-recursive Functions

Theorem. F, C WHILE and F;*" C WHILEP"

Proof (ldea) We already proved that P = LOOP C WHILE.

It remains to show that the p operator can be “implemented” as a WHILE
program (below: informal notation)

I == 0;
while g(n,i) #20 do i:=i+1 end
It can happen that the o operator is applied to a partial function:

e g(n,j) might be undefined for some j before a value i is found for which
gn,i)=0
e g(n,i) is defined for all i but is never 0.

The 1 operator is defined s.t. in such cases it behaves exactly like the while program.

16

u-recursive Functions

Question:

Are there u-recursive functions which are not primitive recursive?

17

Ackermann Funktion

Wilhelm Ackermann (1896-1962)
e Mathematician and logician

e PhD advisor: D. Hilbert
Co-author of Hilbert's Book:
“Grundziige der Theoretischen Logik”

e Mathematics teacher, Liidenscheid

18

u-recursive Functions

r

Definition: Ackermann function A
A(0,y) = y+1
A(x 4+ 1,0) A(x,1)
Ax+1,y+1) = A(x,A(x+1,y))

Ack(x) = A(x, x)

19

u-recursive Functions

f

Definition: Ackermann function A

A0,y) = y+1
A(x + 1,0) A(x, 1) Ack(x) = A(x, x)
Ax+1,y+1) = A(x,A(x+1,y))
_
xy ||lO 1 2 3 4 n
0 |lo+1=1 14+1=2 24+1=3 3+1=4 4+1=5 n+1
1 A(0,1)=2 |A(0, A(1, 0))=3 | A(0, A(1, 1))=4 | A(0, A(1, 2))=5 [A(0, A(1, 3))=6 n+2
2 ||A(1,1)=3 |A(1, A(2,0))=5 |A(L, A2, 1))=7 |A(1, A(2, 2))=9 | A(1, A2, 3))=11 2n+3
3 ||A2,1)=5 |A(2, A3, 0))=13 A(2, A3, 1))=29 A(2, A(3, 2))=61| A(2, A(3, 3))=125 on+3_3
2
4 |[|A@3B 1) A(3, A4, 0) |AB, A4 1) |AGB, A4, 2)) |A@B, A4, 3)) 22"'2 3
N’
) n+3
2 2
:222 _3:2222 ., _ 222 L 222 ., :22265536 »
— 13 — 65533

20

u-recursive Functions

r

Theorem. The Ackermann function is:
e total
® [i-recursive

e not primitive recursive

21

u-recursive Functions

()

Theorem. The Ackermann function is:
e total
® [i-recursive

e not primitive recursive

Proof: The Ackermann function is total. (In every recursion step one of the

arguments is smaller.)
We show that Ack is u-recursive. ldea of proof:

Ack is TM-computable: We can store the recursion stack on the tape of a
TM.

We will show that F, = WHILE and that TM C F,
From this it will follow that Ack is p-recursive.

u-recursive Functions

()

Theorem. The Ackermann function is:
e total
® [i-recursive

e not primitive recursive

Proof: Ack is not primitive recursive. ldea of proof:

For a primitive recursive function f, the depth of function unwind needed
to compute f(n) is the same for all n. But Ack cannot be computed with
constant unwind depth. (The detailed proof is complicated.)

23

u-recursive Functions

()

Theorem. The Ackermann function is:
e total

® [i-recursive

e not primitive recursive

Proof: Ack is not primitive recursive. ldea of proof:

For a primitive recursive function f, the depth of function unwind needed
to compute f(n) is the same for all n. But Ack cannot be computed with
constant unwind depth. (The detailed proof is complicated.)

Alternative proof: We can show that the Ackermann function grows faster

than all p.r. functions. (Proof by structural induction)

24

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

— P

25

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F,, = WHILE

Summary

— P

26

Overview

We know that:

7~

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP™t = GOTOP"t C TMPart
e LOOP # TM

.

In this section we proved:

e LOOP =P
o f, C WHILE and Fﬁart C WHILEP

Still to show:
o TM C Fy,
o TMPt C FPa

27

TM revisited

(1) Godelisation of Turing machines

We can associate with every TM
M= (K,X%, J,s)

a unique Godel number

(M) e N
such that
e the coding function (computing (M) from M)

e the decoding function (computing the components of M from (M))

are primitive recursive

28

TM revisited

(2) Godelisation of configurations of Turing machines

We can associate with every configuration of a given TM
C: gq,wau

a unique Godel number

(C) eN
such that

e the coding function (computing (C) from the components of the

configuration C)

e the decoding function (computing the components of C from (C)) are

primitive recursive

29

The Simulation Lemma

Lemma (Simulation Lemma)
There exists a primitive recursive function

fu:N° = N

such that for every Turing machine M the following hold:

If Co, ..., Ct are configurations of M (where t > 0) with
Citm G (0<5i<t)

then:
fu({M),(Co) ., t) = (Ct)

30

The Simulation Lemma

Proof. (Idea)

e The coding/decoding functions for TM and configurations are primitive
recursive

e Every single step of a TM is primitive recursive

e A given number t of steps in a TM is primitive recursive

Therefore, fiy is primitive recursive.

(Detailed, constructive proof in which the functions are explicitly given: 4
pages in [Erk, Priese])

31

TM computable functions are p-recursive

Theorem Every TM computable function is u-recursive.

TM C F,, and TMPt C FPart

Proof (Sketch)
Let f : N* — N be a TM computable function. Let M be a TM which computes f.

f(nl,...,nk):nk+1ist,#|...|#...#|...|# l_M h,||ﬁ

N o=’ N N o=’
n Nk Mk+1
Hence: f(n1, ..., nk) = (fu((M), start, ui((fu({(M) , start, i))state = (h))))w, wWhere:

® start = s,#|...|#..-#|-~-|#>
N~ ~—~

e (h) is the Godelisation of the end state
® (:)state is the decoding of the state of a configuration
® (-)w is the decoding of the word left to the writing head

wi(g(n, i) = h(n, i)) is an abbreviation for pi((g(n, i)—h(n, i))+(h(n, i)—g(n,i)) = 0)
(smallest i for which g(n, i) = h(n, i))

32

Kleene Normal Form

Corollary (Kleene Normal Form)
For every p-recursive function f there are primitive recursive functions

g, h such that
f(n) = g(ui(h(n) = 0))
so f = g o uh.

33

Consequence

F, = TM = WHILE

34

Summary

Classes of computable functions:

~

e LOOP = P C WHILE = GOTO = TM = F,
o WHILEPt = GOTOPat = TMpart — FRart
e LOOP # TM

35

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

36

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

37

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the
functions which are Turing computable.

38

The Church-Turing Thesis

Informally: The functions which are intuitively computable are exactly the
functions which are Turing computable.

Instances of this thesis: all known models of computation
e Turing machines
e Recursive functions
e)-functions
e all known programming languages (imperative, functional, logic)

provide the same notion of computability

39

Alonzo Church

Alonzo Church (1903-1995)

e studied in Princeton; PhD in Princeton
e Postdoc in Goéttingen
e Professor: Princeton and UCLA

e Layed the foundations of theoretical computer
science (e.g. introduced the A-calculus)

e One of the most important computer scientists

40

Alonzo Church

PhD Students:

Peter Andrews: automated reasoning

Martin Davis: Davis-Putnam procedure (automated reasoning)
Leon Henkin: (Standard) proof of completeness of predicate logic
Stephen Kleene: Regular expressions

Dana Scott: Denotational Semantics, Automata theory

Raymond Smullyan: Tableau calculi

Alan Turing: Turing machines, Undecidability of the halting problem

... and many others

41

Next time

Recapitulation: Turing machines and Turing computability
Recursive functions

Register machines (LOOP, WHILE, GOTO)

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models

42

