

 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

LLM-based chatbot for

online

Escape Rooms

1
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

LLM-based chatbot for online escape rooms

1. Concept

As part of the GAME-LOAP project, a digital escape room is being created as a test object for use in

teaching. The escape room will be created using the learning content creation tools from Lumi

Education. Lumi uses the H5P file standard, which can also be packaged as a SCORM package. Based on

the openness of the SCORM standard, the Escape Room in this project is extended by an LLM-based

chatbot customised with prompt engineering.

2. Architecture

In order to talk about the architecture of the chatbot extension, the architecture of a SCORM package

must first be known.

A SCORM package is a ZIP archive of a very simple, exclusively client-based web application. It is

therefore a packed archive of HTML, CSS, JS and media files that are downloaded to the user's computer

to be executed locally in the browser.

The export of SCORM packages is destructive with regard to changes made to the code. A new export

overwrites all changes. To make changes to the code, the learning content must be exported, unpacked,

modified and packed again after each change to the learning content.

This project makes the following changes to an existing escape room exported from Lumi Desktop:

1. A function is added to the h5p_adaptor.js file. This function serves as the entry point for all

further changes. It is the only change to existing SCORM package files.

2. A folder /Chat is added to the root directory of the SCORM package. This folder contains all

other files for the extension (images, code, HTML)

The aim of this structure is to change as little existing code of the SCORM package as possible in order

to avoid unnecessary work after updates of the Escape Room. For this reason, it should also be possible

to add the other files as a single folder.

With regard to the interface of the escape room, the extension works like an overlay, it is superimposed

over existing elements as a new layer. Existing elements are not changed.

In order for the chat interface to function as an LLM chat (in this case ChatGPT), it requires a connection

to the OpenAI API. As SCORM packages are exclusively locally executed applications, this API cannot be

accessed due to CORS. The solution is a proxy server. As SCORM packages do not use servers, there

must be a server somewhere in the connection between the user and the API that has the API key and

can reach the API, but has no restrictions on the incoming side. Such a proxy server is provided with this

project using Cloudflare Workers.

2
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

This results in the following architectures:

Figure 1 - Sequence of API calls

Figure 2 - Page layout,

Figure 3 - Page layout with chatbot

3
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

3 Implementation

The actual implementation of the chatbot "plugin" for SCORM packages is divided into three parts. The

actual chat interface, the function that connects it to the existing SCORM package, and the proxy server

on Cloudflare. In this chapter, I will go into more detail about the exact technical implementation of the

individual parts so that the structure can be understood and adapted appropriately if necessary.

3.1 Chat interface

The chat interface itself also consists of two parts. The button that opens a popup and the chat interface

itself. The button, including the import for the chat interface, is defined in Overlay.html. Some CSS

attributes are also integrated directly into the HTML file; these position and style the button and the

frame of the pop-up, as well as the "closePopupButton". The actual chat interface is integrated as an

iframe, which allows it to behave like a separate website. The button has a high z-index so that it is

always displayed in the foreground.

The chat interface, defined in interface.html, can be understood as a separate website and can also be

used as such by opening interface.html directly. This website is programmed more dynamically than the

overlay and also uses two external resources as well as a configuration file (config.js) and a file for the

logic of the interactive chat window (chat.js).

The external resources are Alpine.js, a small JavaScript framework for dynamic websites and

tailwind.css, a CSS framework for simple class-based styling. These are not integrated via a package

manager such as Node, but are stored locally in the package as a minified version. Alpine.js is used for

the dynamic changes to the interface and also provides the basis for the logic that sends the chat

messages to the API. Tailwind is the only stylesheet on this website.

The chat.js file contains all the logic for managing the chat history, for all animations and changes to the

interface as well as for accessing the API or the proxy server. An Alpine.js app is first created here, which

you can imagine to be a bit like an OOP class. It has methods and attributes. Alpine.js can be used to

bind attributes of the app to inputs in HTML, which then automatically passes information in both

directions. The input field textarea is linked to the input variable of the Alpine app by x-model="input".

If the message is sent using the "sendMessage" button or ENTER, the input is appended to the previous

messages and sent to the proxy server. Using SHIFT+ENTER, multi-line prompts can be entered and

formatted as usual in chat applications. The reply is also added to the previous messages, the input is

emptied and the chat window scrolls to the end of the conversation. The query headers allow a query

to the proxy server without CORS.

The interface itself can be divided into two parts in terms of appearance. The chat history in the upper

part consists of the logo and avatar, as well as the scrollable message container, while the lower part

consists of the input area and the buttons for sending and deleting the conversation. The message

container can display any number of messages and can be scrolled to view the entire history. Messages

from the LLM are displayed on the left, messages from the user on the right. New messages trigger a

function that automatically scrolls to the end of the conversation.

In addition to general settings, Config.js also lists the system prompt that defines the identity of the

chatbot. An example is given. Changes to this system prompt change the identity and response

behaviour of the chatbot. Prompt engineering is useful here. The system prompt should not be too long.

The prompt length of all prompts has a strong influence on the costs of the application.

4
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

3.2 The function

The new function of h5p_adaptor.js binds the chat extension to the existing SCORM package. It is the

only change to the existing code of the SCORM application.

The function is initially created as setInterval. This is a standard JavaScript function for a loop that is

executed with defined delays. In this case, this is necessary and useful as the time at which all

components were created by the SCORM package is not known. It is therefore necessary to wait until

the interface of the escape room has been completely built up before adding new elements. The

timeout here is one second. If the required element h5p-container is found, the overlay is loaded via

the fetch function. A new div element is then created, the overlay inserted into it and added to the h5p-

container as a new child. In addition, an EventListener is added to both the openPopupButton and the

closePopupButton, which enables the popup to be opened and closed.

3.3 Proxy server

The proxy server forms an intermediate step between the plugin and the OpenAI API. It is designed for

the use of Cloudflare Workers. The structure follows the templates for Cloudflare Workers, the code is

only in one file, src/index.js. If the code needs to be recreated, the OpenAI library must also be imported.

This library is already imported in the code provided. The Index.js of the proxy server definition receives

the request from the chat interface, forwards it, enriched with the API key, which is defined in Cloudflare

as an environment variable, to the OpenAI API, receives a response there and returns it to the chat

interface. The header definitions prevent CORS errors.

5
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

4 Instructions for use

1. Export your Lumi project with the Lumi Desktop application as a SCORM package (Lumi Web

Export defective as of 02/2025)

2. Unpack the archive into a folder

3. Download the code of the chat plugin from this Git repository: https://gitlab.uni-

koblenz.de/egruen/gameloap (git clone or direct download)

4. Read the Readme.md file completely

5. Open the file h5p_adaptor.js in your unpacked archive of the Escape Room with any text editor

(NO MS Word, notepad++ or vscode recommended)

6. Open the file h5p_adaptor_extension.js from the downloaded files from GitLab with any text

editor (see above)

Figure 4 - Export settings

Figure 5 - Chat plugins from the Git repository

https://gitlab.uni-koblenz.de/egruen/gameloap
https://gitlab.uni-koblenz.de/egruen/gameloap

6
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

7. Copy all contents of the ... extension.js file to a suitable location in the h5p_adaptor.js file

(outside of existing functions, after the end() function is recommended, see image)

8. Copy the /chat folder from the Git code into the Escape Room folder, it should now be "next to"

the /images folder

9. There is a config.js file in this copied /chat folder, customise it as you wish. You can also adjust

the images in /chat/images if necessary. Always retain all file names when exchanging. The

adjustments change the labelling of buttons, for example, or the behaviour and identity of the

LLM.

Figure 6 - ... extension.js code

Figure 7 - Folder structure of the files

7
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

10. Once you have completed all the copying and customisation steps, package the Escape Room

folder as a ZIP file and upload it to Moodle/Olat.

If no proxy server exists, you must create one. The instructions for this are here:

https://developers.cloudflare.com/workers/get-started/guide/

The code for the proxy server is located in the /Proxyserver folder and can be uploaded to Cloudflare

using npx wrangler deploy. No free account is required for this. The new proxy server must then be

stored as a URL in config.js. The worker must also receive the API key as an environment variable in

Cloudflare.

5 Notes

The OpenAI API costs money. The account that is currently behind it is assigned to Elisabeth Grün.

Excessive use can lead to high costs.

Theoretically, it is possible to exploit and misuse this proxy server. 100,000 requests per day are free of

charge.

This plugin has basically been developed as a prototype for research purposes. A productive long-term

use requires investigation of security gaps, errors and probably requires further development of the

code.

If you have any questions, please contact the person responsible for this project.

6 Problems

A number of problems arose during development:

1. CORS

a. CORS or cross origin resource sharing is a security feature of Internet traffic

b. CORS prevents requests from locally running systems to APIs, for example

c. Bypass requires a proxy server in this case

d. Proxy server must not be protected by CORS→ Unsafe!

2. SCORM

a. SCORM is a format that basically describes ZIP files of HTML pages (+ logic for

evaluation)

b. SCORM packages are not well suited for customisation

c. SCORM may behave differently locally than on OLAT, especially with regard to CORS

d. API keys must never be stored in a SCORM package

https://developers.cloudflare.com/workers/get-started/guide/

8
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

3. LUMI

a. Lumi Web does not allow export to SCORM

b. Lumi Web h5p files cannot be opened in Lumi Desktop (bug report was created by me)

c. Changes to the escape room require re-embedding the chat

d. There are h5p to SCORM formatted online, but these export parts of the SCORM code

slightly differently than Lumi, which may require manual adjustments to the chat

extension if these tools are used

4. Cloudflare

a. The proxy server is not well secured

b. The setup is very complex

c. An AI gateway is required

d. An account is required

e. The proxy server is public, it could be scraped

f. Technically, this part is somewhat more complex to recreate if it no longer exists.

5. Local development

a. CORS and the OpenAI API behave differently depending on the context from which the

call is made

b. HTML imports as well (relative/absolute paths)

6. API key

a. API keys must never be public

b. Server is required, but SCORM does not provide one

7. LLM selection

a. Initially, we considered hosting an LLM ourselves

b. This would have required data centre resources

c. The setup was complex

d. CORS would have been a problem there too

e. LLM data centre would have made VPN necessary

9
 DigiKompASS is funded by the Foundation for Innovation in University Teaching.

8. Display

a. The escape rooms may have problems displaying on unconventionally sized screens in

full screen

b. As the overlay is a pure overlay and is not anchored to elements of the Escape Room, it

is possible that elements of the chat pop-up or the button may cover operating

elements or content, which cannot be prevented. If this causes problems in operation,

the browser window can be distorted to reveal elements.

