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Abstract

Context: Providing precise definitions of all project specific terms is a crucial task in requirements engineering. In
order to support the glossary building process, many previous tools rely on the assumption that the requirements set
has a certain level of quality. Yet, the parallel detection and correction of quality weaknesses in the context of glossary
terms is beneficial to requirements definition. Objective: In this paper, we focus on detection of uncontrolled usage of
abbreviations by identification of abbreviation-expansion pair (AEP) candidates. Method: We compare our feature-
based approach (ILLOD+) to other similarity measures to detect AEPs and propose how to extend the glossary term
extraction (GTE) and synonym clustering with AEP-specific methods. Results: It shows that feature-based methods
are more accurate for AEPs than syntactic and semantic similarity measures. Experiments with PURE data-sets
extended with uncontrolled abbreviations show that ILLOD+ is able to extract abbreviations as well as match their
expansions viably in a real-world setting and is well suited to augment previous synonym clusters with clusters that
combine AEP candidates. AEP clusters generated with ILLOD+ are generally smaller than those based on syntactic or
semantic similarity measures and have a higher recall. Conclusion: In this paper, we present ILLOD+, an extended
feature-based approach to AEP detection and propose a workflow for its integration to clustering of glossary term
candidates to enhance term consolidation in evolving requirements.
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1. Introduction

One of the goals in requirements engineering is to
improve an opaque system comprehension into a com-
plete system specification [1]. Activities related to glos-
sary building support that goal, since glossaries serve to
improve the accuracy and understandability of require-
ments written in natural language [2].

According to the International Requirements Engi-
neering Board (IREB) [3], a glossary is a collection
of definitions of terms that are relevant in a specific
domain. In addition, a glossary frequently contains
cross-references, synonyms, homonyms, and abbrevia-
tions [3, 4]. Glossaries serve to enrich the requirement
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texts with additional important information, which en-
sures that technical terms are used and understood cor-
rectly, and supports communication among project par-
ticipants [5]. The consequent use of a complete and
accurate glossary leads to a more consistent language,
resulting in coherent structures for the requirements,
which in turn enhances automatic analysability [6, 7].
Finally, a glossary can be reused for future projects
within the same application domain to facilitate require-
ments elicitation and analysis [4, 8].

In order to obtain the mentioned benefits, a glossary
should be developed early during the requirements elic-
itation phase and further maintained over the course
of the project, which is also compliant to best prac-
tices [5, 9]. For various reasons, many projects tend
to build their glossary after the requirements elicita-
tion phase [10–12]. However, this complicates the
task, since requirements written without the use of a
glossary are more likely to contain imprecise or am-
biguous wordings. When multiple terms are used to
refer to the same meaning (synonyms), denote spe-
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cializations (hyponyms), or terms have multiple mean-
ings (homonyms), this presents a major challenge for
the identification of glossary terms. Therefore, before-
hand, the analyst has to ensure that the terminology is
used consistently, e.g., through syntactic or semantic ad-
justments. This task affects various inter-requirement
relations in parallel.

With this paper, we present an approach that encour-
ages the analyst to start with the glossary building, even
when the requirements quality still shows weaknesses,
and contributes to resolve two tasks in parallel:

(1) quality improvement of the requirements through
reduction of lexical variation and

(2) glossary term identification.

In particular, we integrate the detection of abbreviations
and their expansions to this workflow.

This paper is an extension of our previous confer-
ence paper [13]. First, the detection of abbreviations
is refined, to better cope with heterogeneous abbrevia-
tion styles—particularly, lower-cased abbreviations and
bi-grams of two consecutive abbreviations. Second,
an extended version of our ILLOD algorithm, which
checks Initial Letters, term Lengths, character Order,
and Distribution of abbreviation-expansion pair candi-
dates, is presented—ILLOD+. Through recursive calls
and a more sophisticated character distribution anal-
ysis, it achieves higher recall and precision. Third,
the preliminary evaluation on the PROMISE [14] data-
set [15, 16] with only 30 injected uncontrolled abbrevi-
ations is extended to the lager PURE [17] data-set with
1934 requirements and a data-set of more than 500 po-
tential abbreviations.

2. Problem Definition

Pohl and Rupp [4] describe basic rules for glossary
usage to enable beneficial use in requirements engineer-
ing, which can be summarized as follows:

a) There is only one valid centrally managed glos-
sary, accessible to all involved personnel.

b) Entries in the glossary shall have a consistent
structure and name the source of the terms, as well
as possible synonyms and homonyms.

c) It is obligatory to exclusively use the terms and def-
initions as defined in the glossary.

d) A responsible must maintain the glossary over the
course of the project, to ensure its consistency and

up-to-dateness. Definitions should be agreed upon
by all involved stakeholders.

Term consolidation within the written requirements
can help to solve issues that originate in disregarding
the above rules, such as use of:

1) terms that are not relevant any more (a),c)),

2) changed, incomplete, incorrect, or incomprehensi-
ble definitions (a),d)),

3) relevant terms that are not (yet) in the glossary (c)),

4) and uncontrolled synonyms (b),c)).

To facilitate the maintenance task d) and the term
consolidation, identification of potential glossary terms
within the requirements and identification of synonyms
among them can be supported by software tools. We
briefly focus on the main problems to be solved by
an automated tool for the identification of glossary
terms (GTE) [2, 6, 12]. Such a tool needs to solve at
least two known problems:

First, since 99% of glossary entries are noun
phrases (NPs) [18, 19]:

(A) GTE tools need an accurate noun phrase detection.

Second, as glossaries deal with domain specific terms
and omit duplicates:

(B) GTE tools need to filter detected noun phrases to
glossary term candidates.

Considering (A), Natural Language Process-
ing (NLP) pipelines for noun phrase detection, e.g.,
through chunking approaches, are shown to be ef-
fective [10, 11]. As such, in this paper we focus on
devising an effective technique for (B). Here, statistical
filters composed of specificity and relevance measures,
as presented by Gemkow et al. [12], could be used, in
which beforehand identification of homonyms, syn-
onyms, and different spelling variants among detected
noun phrases is expected to have a positive effect on
accuracy. Since we explicitly consider requirement sets
with such quality weaknesses, we first focus on:

(B1) GTE tools need to identify and/or merge
homonyms, synonyms, hyponyms and different
spelling variants among detected noun phrases.

To detect such relations among domain terms is also
beneficial for the building of initial domain models.
However, in the following, we focus on the consolida-
tion of terms to reduce language variability—and, thus,
ambiguity—of requirements.
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A tool to support the term consolidation should be
able to show which terms are already defined, as well as
the change history of their definitions. Further, it should
provide the possibility to add new terms and definitions
to the glossary, update definitions, maintain synonym
lists and references to homonyms or hyponyms, as well
as flag entries as approved and final.

In order to check whether a given pair of terms is syn-
onymous, homonymous, or hypernymous, the underly-
ing concepts themselves must be disambiguated [18],
which requires good knowledge about the relevant do-
main. Therefore, candidate term pairs still have to be
confirmed or rejected by the analyst.

For this task recall is more relevant than preci-
sion [11] since it can be classified as a hairy require-
ments engineering task [20]: First, not all ambiguities
(synonyms, hyponyms, homonyms) are easy to spot for
human eyes. Second, a user with knowledge of the do-
main can decide immediately whether a given term pair
is synonymous, homonymous or hypernymous. This
means that true positives are difficult to find and false
positives are generally easily identified by humans. A
tool to support this task should therefore have the high-
est possible recall. To tackle low precision, term clus-
ters are a suitable method of representation. A cluster
of size n can combine (n(n − 1))/2 term pairs and pro-
vides a good solution for making a high number of false
positives less costly. However, precision should not be
shortchanged, since too large clusters can limit the prac-
ticability of the tool and the size of clusters can easily
exceed the limits of information amount that humans
can process at one time [21].

For example, REGICE [11] follows a synonym clus-
tering approach. Yet, only context-based (semantic) and
text-based (syntactic) similarity [22] are considered and
abbreviations must be cleaned up and defined before-
hand. Homonyms and hyponyms are not explicitly ad-
dressed, but can be spotted as bycatch during inspection
of the synonym clusters. However, for homonyms this
is only the case for non-disjoint clusters.

For higher recall in synonym detection, additionally
pattern-based similarity [22] for controlled abbrevia-
tions can be applied. It refers to clauses where abbrevia-
tions are defined by their corresponding expansions us-
ing parentheses or keywords such as “also known as”,
“abbreviated” and “a.k.a.”, e.g.,

• Common Business Oriented Language
abbreviated COBOL

• AES (Advanced Encryption Standard)
• Compression / Decompression,

also known as Codec

More interesting, however, is an algorithm that also
supports to resolve uncontrolled abbreviations, which
are not defined in place when they are used. Uncon-
trolled abbreviations in requirements are rather com-
mon, especially when requirements elicitation is carried
out by different persons (in different organizations) and
when guidelines for the use of abbreviations are miss-
ing or not followed. Abbreviations can be homonymous
by having multiple possible expansions within the same
requirements set, as they are predominantly used in a
project- or domain-specific context, and new projects
regularly come up with new word creations. Thus, sim-
ple look-up techniques on predefined lists are not suffi-
cient. This leads us to the next problem statement:

(B1.1) GTE tools need to exploratorily resolve hitherto
unknown abbreviations in comparison to other
terms present in the given text.

Since the abbreviation list is part of the glossary, both
should be built in parallel. The goal is to enable a
specific synonym detection optimized for matching
of abbreviations with their expansions, which can be
integrated to the clustering in glossary term extrac-
tion (GTE) tools.

3. Approach Overview

Fig. 1 illustrates our vision of a workflow to consoli-
date glossary terms within evolving requirements:

First, term candidates are extracted from the require-
ments texts and clustered into synonym clusters and
AEP groups, matching hitherto undefined abbreviations
detected in the texts with all their potential expansions
among the term candidates. This process should be au-
tomated by tools such as REGICE for clustering and IL-
LOD for AEP matching.

In a second step, these clusters are manually in-
spected to identify true synonyms and consolidate them
to a preferred term, as well as confirm abbreviation-
expansion pairs. Options shall be discussed with in-
volved stakeholders and final results approved by them.

Third, the responsible for glossary maintenance in-
corporates the outcome of the previous step to the glos-
sary and its related abbreviation list. This might include
the introduction of new glossary terms with their defi-
nitions, the addition of terms to synonym lists of other
defined terms, changes to terms and/or definitions, and
the addition of new entries to the abbreviation list.

Based on the updated glossary, in the last, forth step,
the requirements are updated to be consistent with the
new definitions and preferred terms in the glossary.

3









 






















Iteration
Requirements


 






















📖📖





 Undefined Term |  Defined Term |  Undefined Abbreviation

Synonym Cluster  | AEP Group

1. Cluster Term 
Candidates

2. Inspect 
Clusters 

3. Update Glossary 
& Abbreviation List




4. Update 

Requirements



Clustering Result

Glossary & 
Abbreviation List

New
Clustering

Fig. 1: Envisioned Workflow for Term Consolidation

This process is executed iteratively over the course of
the project, reducing the number of undefined terms and
abbreviations while the requirements stabilize.

In this paper, we focus on the first step. To enable the
automation of detection and clustering of abbreviation-
expansion pairs (AEPs), we first compare the accu-
racy of syntactic and semantic similarity measures
with feature-based classification approaches applied to
AEPs. In distinction to semantic (context-based) and
syntactic (text-based) similarity measures [22], feature-
based approaches rely on the evaluation of several dis-
tinct syntactic features, e.g., matching of initial letters.
We introduce ILLOD+, a feature-based binary classifier
extending the algorithm of Schwartz and Hearst [23].
It checks Initial Letters, term Lengths, Order, and
Distribution of characters. Finally, we propose how
tools like ILLOD+ can be integrated beneficially into
the clustering of glossary term candidates.

4. Related Work

Gemkow et al. [12] reduce the number of glossary
term candidates for glossary term extraction (GTE) by
using relevance and specificity filters. Improving the
precision of glossary term extraction like this is impor-
tant especially for large data-sets. Yet, they do not regu-
late the possible presence of synonyms and homonyms
when determining term frequencies.

Arora et al. [11] argue that clustering of glossary term
candidates has the advantage to better mitigate false
positives from noun phrase detection (A) and to support
candidate filtering (B). In addition, their approach pro-
vides guidelines on how to tune clustering for a given re-
quirements set, to detect synonyms with high accuracy.
They conclude that disjoint clusters should be produced
in order to keep the workload for term identification low.
In Section 7, we look at this from a new perspective and
suggest to use different types of clusters for abbrevia-
tions as a special type of synonyms.

There are various approaches for the extraction and
recognition of abbreviation-expansion pairs (AEPs). In
addition to statistical [24, 25] and rule-based meth-
ods [26, 27], there are also machine learning meth-
ods [28, 29]. Many publications deal with biomedi-
cal texts and a few, like Park et al. [30], with the field
of computer science. Most work assumes that AEPs
are predefined in the text via certain patterns and fo-
cus their analyses on the surrounding context of the de-
tected abbreviations, which is also the case for Schwartz
and Hearst [23]. In our work, we extend the algo-
rithm findBestLongForm presented by Schwartz and
Hearst [23] to make it applicable for cross-comparisons
where an abbreviation and its expansion may occur
in different sentences/requirements and are distributed
over the given text. We also show that this extension—
ILLOD+—can be used beneficially in extraction and
identification of requirements glossary terms.

5. Abbreviation Detection

The first step to AEP-matching is the identification
of abbreviations. Since “[t]he styling of abbreviations
is inconsistent and arbitrary and includes many possi-
ble variations” [31], abbreviation extraction is equiv-
ocal. Usually it is achieved by finding single words
that are relatively short and have several capital let-
ters [23, 32, 33]. This way, not only acronyms are ad-
dressed, but also other forms of abbreviations. How-
ever, this might not fit lower cased or truncated words.

To solve this task, a simple algorithm detects abbre-
viations of the former type. It returns “true” for a given
word w, if the capital letter portion and the word length
exceed respectively fall below specified parameter val-
ues, otherwise it returns “false”. We test this method
on a cleaned list of 1786 abbreviation-expansion pairs
known from the field of information technology [34]1

with abbreviations of different styles. We reference this

1For reproduction, it is included in the supplemental material [35].
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list with L, all abbreviations a ∈ L with A, and all expan-
sions e ∈ L with E. To identify suitable parameters for
word length and the proportion of capital letters, we per-
form F1-optimisation through an exhaustive search on
all possible combinations of the two parameters, since
false identification of text as an abbreviation can lead to
increased workload in the following steps, we believe
that precision should not be disregarded. The search
is conducted in the range from 0.01 to 1.0 (in 1/100
steps) for the capital letter portion parameter and from
1 to 20 for the word length parameter. The algorithm
is once tested on all a ∈ A and once on all e ∈ E to
obtain false negative and false positive assignments re-
spectively. After optimization, with word-length ≤ 13
and proportion of capital letters ≥ 0.29, we achieve Pre-
cision = 0.922, Recall = 0.923, and F1 = 0.922.

For abbreviations formed of lower case letters only,
e.g., “env” for “environment”, a second algorithm runs
after the previous one. Here, a word w is considered
to be an abbreviation if a) it consists of only one letter
which is not “a” or b) it is not in the linguistic dictionary
and word-length is ≤ the given limit. If w contains spe-
cial characters like “-” and “\”, w is split at these and
we check recursively whether at least one of the sub-
words is a lower case abbreviation. Again, the maxi-
mum word-length is determined by F1-optimisation in
the range from 1 to 20 and the algorithm is once tested
on all lower cased a ∈ A and once on all lower cased
words of all e ∈ E to obtain false negative and false
positive assignments respectively. After optimisation
with word-length ≤ 6, we achieve Precision = 0.919,
Recall = 0.836, and F1 = 0.875.

Finally, we obtain on L for the overall approach Pre-
cision = 0.956, Recall = 0.937, and F1 = 0.947.

On full written text, detection is more challenging
and further measures must be taken:

a) Apply a filter for numbers like “3.1.4” or “4-12”.

b) Apply a stop word filter sorting out stop words that
have only one uppercase letter as first letter, e.g.,
“The”, “Any”, or “If”.

c) Apply the detection also on all bi-grams, where
both words have to match to find abbreviations,
consisting of two consecutive abbreviated terms,
e.g., “Pg Dn” for “Page Down”. When a bi-gram
abbreviation is found, we remove its single parts
from the overall results list, if they only appear in
the bi-gram, to avoid redundancies.

d) Every word w that directly ends with a full stop,
consists only of lowercase letters, and has ≤ 6 let-
ters is also considered to be an abbreviation.

6. Detection of AEP Candidates

For AEP detection, different types of similarity mea-
sures are eligible. In a nutshell, words are semanti-
cally similar if they have the same meaning and syn-
tactically similar if they have a similar character se-
quence [36]. Semantic measures rely on data from large
corpora or semantic nets—models of terms and their re-
lations, whereas “syntactic measures operate on given
words and their characters without any assumption of
the language or the meaning of the content” [36]. Fi-
nally, feature-based similarity rates features that are
common to a given pair of words, e.g. the order of cer-
tain letters. Below, we compare three different types of
classifiers for AEP detection we implemented in Python
based on these three types of similarity measures.

6.1. AEP Detection with Semantic Similarity Measures

Most methods to semantic similarity need to know
queried terms in advance. This applies to knowledge-
based methods that rely on lexical databases such
as WordNet [37] and corpus-based methods such as
Word2vec [38]. As a result, these methods are not suit-
able to solve (B1.1). Thus, we chose FastText (FT) [39]
as a generic approach and state-of-the-practice tech-
nique to assess the suitability of semantic similarity
methods for AEP detection. To assign an abbreviation
a to a potential expansion t in the upcoming evaluation,
our simple semantic classifier returns whether

cosine sim(peFT (a), peFT (t)) ≥ threshold,

where cosine sim is the cosine similarity for two vec-
tors x and y, defined as xT y

∥x∥∥y∥ , and peFT (x) stands for
phrase embeddings with FastText: 1

|x|
∑

w∈x embedFT (w).
Although the use of fixed thresholds is unusual for simi-
larity measures that provide a ranking, alternatives, e.g.,
based on percentiles, have drawbacks in the context of
the clustering use case we strive for. We discuss this in
more detail in Section 8.

6.2. AEP Detection with Syntactic Similarity Measures

The second type of classifier uses syntactic similar-
ity measures between a and t. For this, several mea-
sures, as summarized by Gali et al. [36], can be used,
like Levenshtein-Distance (LD), Jaro-Winkler-Simila-
rity (JWS), an extension of Jaro-Similarity, and the
Dice-Coefficient (DC). We do not choose the extended
Damerau–Levenshtein-Distance as it considers trans-
positions and plain LD is therefore more sensitive to
changes in the sequence of letters. However, the use of
syntactic similarity measures to detect AEPs is limited.
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Table 1:
Syntactic and semantic similarities between randomly chosen AEPs (a, e) ∈ L (* indicates distance measures d∗ normalized to similarity in [0, 1]
by d∗ = 1 − (d(a, e)/max(|a|, |e|)) [36]); LD: Levenshtein-Distance, JWS: Jaro-Winkler-Similarity, DC: Dice-Coefficient, FT: FastText

Abbreviation-Expansion Pair (a, e) LD* JWS DC FT
(LED monitor, Ligth-emitting diode) 0.15 0.435 0.818 0.442
(Int, integer) 0.286 0.651 0.667 0.21
(PS/2, Personal System/2) 0.235 0.436 0.444 0.142
(IANA, Internet Assigned Numbers Authority) 0.114 0.612 0.316 0.448
(SMM, System Management Mode) 0.136 0.586 0.307 0.269
(U/L, upload) 0.0 0.0 0.444 0.025
(IAP, Internet access provider) 0.042 0.458 0.375 0.152
(CLNS, connectionless network service) 0.0 0.0 0.471 0.303
(MMC, MultiMediaCard) 0.214 0.603 0.333 0.533
(I/O, input/output) 0.083 0.472 0.6 0.147

Table 2:
Average syntactic similarities for all pairs (a, e) ∈ L and (a, â) with
â = potAbb(e) with and without pre-processing (pre) (* indi-
cates distance measures d∗ normalized to similarity in [0, 1] by d∗ =
1− (d(a, x)/max(|a|, |x|)) [36]); LD: Levenshtein-Distance, JWS: Jaro-
Winkler-Similarity, DC: Dice-Coefficient

Compared LD* JWS DC pre

(a, e) 0.092 0.309 0.419 no
0.183 0.637 0.422 yes

(a, â) 0.361 0.422 0.861 no
0.797 0.896 0.865 yes

Typically, abbreviations contain only a small proportion
of the letters of their respective extensions. E.g., the
pair (“ISO”, “International Organization for Standard-
ization”) has only a share of 3/14 common characters
compared in lower case. This is also reflected in Ta-
ble 1, where the similarities between randomly selected
pairs from L are rather low.

To overcome this, the matching of an abbreviation a
and some possible expansion t can be estimated by cre-
ating a potential abbreviation â = potAbb(t) out of the
initial letters of the single words of t. Similarity is then
measured between a and â. This contraction allows to
compare a and t on a homogeneous representation level.
Table 2 summarizes the average values of the syntactic
comparisons between (a, e) as well as (a, â) for all pairs
(a, e) ∈ L, where â = potAbb(e) following the just men-
tioned contraction approach.

Further, we apply pre-processing by converting the
string into lower case letters, removing punctuation
marks and the stop words “for”, “and”, “of”, “in”,
“via” and “be”. Table 2 shows, that pre-processing
and contraction have a positive effect for all three ex-
amined measures. For (a, e), the average (normalized)

Levenshtein-Distance improves by 0.705, average Jaro-
Winkler-Similarity by 0.587, and the average Dice Co-
efficient by 0.446. Thus, with ac = preprocess(a) and
tc = preprocess(t), the second type of classifiers returns
whether

syntactic sim(ac, potAbb(tc)) ≥ threshold.

Although abbreviations usually have short length—in
our dataset L, the average after pre-processing is 3.55—
it can be assumed that â and a still differ in many cases
despite pre-processing. For the Levenshtein-Distance,
there is a relative difference of 20.3% in average be-
tween â and a even after pre-processing, which shows
that, as assumed [31], the formation and use of abbrevi-
ations in information technology is not subject to fixed
guidelines/regulations in practice. Even though the av-
erage Jaro-Winkler-Similarity and the average Dice-
Coefficient-Similarity are close to their ideal value of
1.0, they are potentially prone to many false positive as-
signments. We address this assumption in Section 6.4.

6.3. AEP Detection with Feature-Based Classification

The third type of classifier is represented by ILLOD,
an extension of findBestLongForm [23], and its refine-
ment ILLOD+. Whether (a, t) is a candidate AEP is de-
cided solely on the basis of features of a and the words
in t. Thus, the approaches are feature-based, although
each feature is identified using conditional rules.

6.3.1. ILLOD
Algorithm 1 specifies ILLOD in pseudo-code. The

method check initial letters(a, t) examines for all let-
ters in a if they correspond to the initial letters of the
words in t. Thus, the calls in lines 2 and 4 check intu-
itively if the a is an acronym of t, but have difficulties
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Algorithm 1: ILLOD(a, t)

1 ac = preprocess(a); tc = preprocess(t);
2 if check initial letters(a, t) then
3 return True ;
4 else if check initial letters(ac, tc) then
5 return True ;
6 else if check order(ac, tc) and

compare lengths(ac, tc) and
check distribution(ac, tc) then

7 return True ;
8 else
9 return False ;

with pairs like (“QnA”, “Questions and Answers”). To
solve this, in line 6 additional features are evaluated:

check order(a, t) examines if the order of the letters in
a can also be found in t and if the initial letters
of a and t correspond. We compare the letters in
backward reading direction to favour an even dis-
tribution over the words of the expansion [23].

compare lengths(a, t) checks whether the length
(count of letters) of a is ≥ the number of words
in t. This sorts out pairs like (“A”, “Advanced
Configuration and Power Interface”), based on the
assumption that a should reference as many words
in t as possible.

check distribution(a, t) tests if the letters from a, if
present in t, are uniformly distributed over the
words in t, to sort out pairs like (“SMS”, “Systems
Network Architecture”) or (“PaaS”, “Palo Alto
Research Center”).

6.3.2. ILLOD+
ILLOD+ differs from ILLOD by recursive calls and

an extended distribution analysis, for which the string of
t is additionally traversed from left to right. Algorithm 2
specifies ILLOD+ in pseudo-code.

After all letters are lowered in line 1, special charac-
ters are cleaned up in line 2. Other than in Algorithm 1,
stop words are not removed in this step. If the cleanup
changes either string, ILLOD+ is called recursively for
the strings cleaned of special characters in line 4.

From line 6 to line 10, ILLOD+ checks whether alow

is an acronym of tlow or whether alow is an acronym of
an extended form tex. Thus, if the initial letters from
words in t match the letters from a. In both cases, (a, t)
is assumed to be an AEP candidate.

Algorithm 2: ILLOD+(a, t)

1 alow, tlow = lower(a, t);
2 acsc, tcsc = clear special characters(alow, tlow);
3 if acsc , a or tcsc , t then
4 if ILLOD+(acsc, tcsc) then
5 return True ;
6 if check initial letters(alow, tlow) then
7 return True ;
8 tex = extend term(tlow);
9 if check initial letters(alow, tex) then

10 return True ;
11 rtl ord, rtl pos = check order rtl(alow, tex);
12 if rtl ord then
13 ltr ord, ltr pos = check order ltr(alow, tex) ;
14 return cigde(alow, tex, ltr pos, rtl pos)
15 return False

Table 3:
Words w ∈ tlow and their Replacement by extend term(tlow) in line 8
of ILLOD+ (alternatives separated by “|”)

Word w Replacement
to 2to
one | 1 1one
two | 2 2two
three | 3 3three
four | 4 4four
and | & &and
plus | + +plus

In tex, selected words and sub-strings are replaced
through extended forms by an extension operation to
cover different syntactical variants, mainly to match
written numbers in t with digits in a. Table 3 shows
the full words that are extended. Further, in line 8, the
sub-string “ex” is replaced with “xex” to match abbrevi-
ations like “XML” for “Extensible Markup Language”.

In line 11, as a prerequisite for further character dis-
tribution analysis, ILLOD+ checks if the right-to-left
order of the letters in alow can also be found in tex. Is
this the case, the boolean rtl ord is true. In addition, the
method check order rtl() outputs rtl pos—the right-to-
left-positions as an integer list. Since the first characters
of alow and tex have to be equal [23], it starts with in-
dex 0. The list indicates at which position of tex a letter
of alow is found. E.g., if rtl pos[2] = 15, the third letter
of alow is found at the 16th position in tex. We refer to
these lists as character distributions D(a,t) for (a, t).

If there is a valid character distribution, in line 13
ltr ord—the left-to-right-order of the letters of alow
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within tex—is determined. Some examples for
valid distributions D(a,t) from check order rtl(a, t) and
check order ltr(a, t) are:

(”ACS”, ”Access Control System”) = [0, 7, 17]
(”ACS”, ”Access Control System”) = [0, 1, 4]
Finally, in line 14, cigde(a, t, ltr pos, rtl pos) checks

if a “good” distribution exists within the complete list of
all valid character distributions for the term pair (a, t).

Algorithm 3: cigde(a, t, ltr pos, rtl pos)

1 valid distr list =
detect all valid distr(a, t, ltr pos, rtl pos);

2 for distr in valid distr list do
3 if check i f distr f its(a, t, distr) then
4 return True ;

5 return False

As shown in Algorithm 3, for every character in alow,
the method detect all valid distr uses the values from
ltr pos and rtl pos as left and right boundaries respec-
tively, to find all possible positions for it. For exam-
ple, valid positions for the letter c within the term pair
(”acs”, ”access control system”) are 1, 2 and 7, whereas
1 is the left boundary given by its ltr-order and 7 is the
right boundary, given by its rtl-order.

A given term pair (a, t) is accepted by ILLOD+ as an
AEP candidate, if at least one of its character distribu-
tions D(a,t) is accepted, otherwise it is rejected. For this,
check i f distr f its in line 3 checks the following rules:

R1) If a and t have a contiguous sequence of more than
4 letters in common, then D(a,t) is accepted.

R2) If t contains only one word w that is concate-
nated and can be split into multiple sub-words
w = w0 . . . wn−1, then rule compliance must
be checked again recursively for (a, tsplit) with
tsplit = w0 . . . wn−1. Examples are “electromag-
netic”, “high-definition”, or “OpenOffice”.

R3) If t contains only one word w that cannot be split,
there are two different variants:

A) accepts D(a,t) without any further condition.

B) applies check order rtl() to check whether
the order of the letters of a is also given on
the initial letters of the syllables of t. E.g.,
for t = “electromagnetic”, with the sylla-
bles “elec-tro-mag-net-ic”, a may only con-
tain letters ∈ [e, t, m, n, i] in the given order.

R4) For stop words, Rule R5 is optional. As stop words
list, we use (“for”, “of”, “in”, “via”, “be”, “over”,
“the”, “et”, “2to”, “&and”, “+plus”).

R5) If t contains multiple words w:

a) Each word w ∈ t must be represented by at
least one letter in a.

b) If exactly one letter from a falls on w, it must
be the initial letter of w.

c) If two or more letters from a fall on w and
none of them on the initial letter, they must
fall on the initial letters of the syllables of w.

R6) If t contains multiple words and at least for one
word w ∈ t only the last letter of w is matched,
D(a,t) is discarded.

Rule R1 identifies AEPs that have matching sub-
sequences of letters in common, such as (“temp”, “tem-
perature”) or (“email”, “electronic mail”).

Rule R2 analyses sub-words in t, to confirm their rep-
resentation in a. For terms that contain only one word,
we implement no further rules, to keep high recall.

Rule R5 provides a frame for the character distribu-
tion D(a,t), which checks for each word w in t that w is
neither under- nor over-represented in a. Rule R4 soft-
ens Rule R5 for stop words, since they are treated very
differently in abbreviations.

Finally, Rule R6 discards character distributions that
rely on the last letter of a word, as this would result in
an unusual letter composition for the abbreviation.

In contrast to ILLOD, ILLOD+ does not explicitly
check for the length of a compared to the word count in
t, as this is implicitly covered by the distribution rules.

For variant building, we checked where splitting of
rules leads to large differences in the experiment results,
while at the same time maintaining a recall similar or
better as ILLOD and an improved F1. Based on these
criteria we selected Rule R3, which has the largest ef-
fect on the results. For other rules, result differences are
neglectable or it negatively impacts F1 or recall. The
two variants A and B of Rule R3 can be seen as a kind
of parameter tuning for ILLOD+ with respect to preci-
sion and recall, as can be seen from the evaluation data
discussed in the subsequent sections.

6.4. Evaluation on a Synthesized Data-Set
We evaluate the classifiers in precision and recall on a

data-set synthesized from a plain abbreviation list. Be-
sides the general focus on recall [11, 20], we consider
precision, since we do not want the generated term clus-
ters in our envisioned workflow (c.f. Fig. 1) to become
too large for humans to lose track of [11].
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Table 4:
F1 performance of AEP detection for different α. Sem (FT) corresponds to the semantic classifier in Section 6.1, Syn corresponds to the differ-
ent variants of the syntactic classifier in Section 6.2 (LD: Levenshtein-Distance, JWS: Jaro- Winkler-Similarity, DC: Dice-Coefficient) and Feat
corresponds to the feature-based classifiers (ILLOD, ILLOD+ A/B) in Section 6.3. Best thresholds are given in the thold columns. (*indicates
normalised LD: LD∗(a, t) = 1 − (LD(ac, potAbb(tc))/max(|ac |, |potAbb(tc)|)) [36])

α = 4 α = 8 α = 14 α = 28 α = 42
Classifier F1 thold F1 thold F1 thold F1 thold F1 thold

Sem FT 0.642 0.25 0.576 0.28 0.525 0.31 0.453 0.33 0.417 0.33

Syn
LD* 0.896 0.4 0.859 0.57 0.847 0.56 0.815 0.54 0.791 0.51
JWS 0.877 0.61 0.843 0.72 0.821 0.74 0.776 0.8 0.754 0.81
DC 0.877 0.61 0.843 0.72 0.821 0.74 0.776 0.8 0.754 0.81

Feat
ILLOD 0.951 - 0.949 - 0.941 - 0.934 - 0.928 -
ILLOD+ A 0.971 - 0.97 - 0.965 - 0.962 - 0.956 -
ILLOD+ B 0.949 - 0.948 - 0.946 - 0.94 - 0.934 -

Table 5:
Recall (R) of AEP detection for different α. Sem (FT) corresponds to the semantic classifier in Section 6.1, Syn corresponds to the different variants
of the syntactic classifier in Section 6.2 (LD: Levenshtein-Distance, JWS: Jaro- Winkler-Similarity, DC: Dice-Coefficient) and Feat corresponds to
the feature-based classifiers (ILLOD, ILLOD+ A/B) in Section 6.3. Best thresholds are given in the thold columns. (*indicates normalised LD:
LD∗(a, t) = 1 − (LD(ac, potAbb(tc))/max(|ac |, |potAbb(tc)|)) [36])

α = 4 α = 8 α = 14 α = 28 α = 42
Classifier R thold R thold R thold R thold R thold

Sem FT 0.596 0.25 0.524 0.28 0.449 0.31 0.398 0.33 0.398 0.33

Syn
LD* 0.882 0.4 0.781 0.57 0.781 0.56 0.781 0.54 0.781 0.51
JWS 0.872 0.61 0.775 0.72 0.773 0.74 0.759 0.8 0.653 0.81
DC 0.872 0.61 0.775 0.72 0.773 0.74 0.759 0.8 0.653 0.81

Feat ILLOD 0.913 - 0.913 - 0.913 - 0.913 - 0.913 -
ILLOD+ A 0.946 - 0.946 - 0.946 - 0.946 - 0.946 -
ILLOD+ B 0.905 - 0.905 - 0.905 - 0.905 - 0.905 -

Table 6:
Precision (P) of AEP detection for different α. Sem (FT) corresponds to the semantic classifier in Section 6.1, Syn corresponds to the differ-
ent variants of the syntactic classifier in Section 6.2 (LD: Levenshtein-Distance, JWS: Jaro- Winkler-Similarity, DC: Dice-Coefficient) and Feat
corresponds to the feature-based classifiers (ILLOD, ILLOD+ A/B) in Section 6.3. Best thresholds are given in the thold columns. (*indicates
normalised LD: LD∗(a, t) = 1 − (LD(ac, potAbb(tc))/max(|ac |, |potAbb(tc)|)) [36])

α = 4 α = 8 α = 14 α = 28 α = 42
Classifier P thold P thold P thold P thold P thold

Sem FT 0.694 0.25 0.64 0.28 0.632 0.31 0.527 0.33 0.439 0.33

Syn
LD* 0.911 0.4 0.955 0.57 0.927 0.56 0.851 0.54 0.8 0.51
JWS 0.883 0.61 0.923 0.72 0.876 0.74 0.794 0.8 0.89 0.81
DC 0.883 0.61 0.923 0.72 0.876 0.74 0.794 0.8 0.89 0.81

Feat ILLOD 0.992 - 0.988 - 0.971 - 0.955 - 0.943 -
ILLOD+ A 0.998 - 0.995 - 0.984 - 0.977 - 0.967 -
ILLOD+ B 0.996 - 0.996 - 0.991 - 0.977 - 0.965 -
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6.4.1. Experimental Setup
To estimate the accuracy of AEP detection ap-

proaches, a data-set D is needed that contains incorrect
and correct AEPs. For this purpose, we compiled D
as D = L ∪ S , where L corresponds to the list from
Section 5 and S consists of the pairs (a, e) in which a
random element e from E was assigned to a given ab-
breviation a, not matching the real abbreviation of e. To
be more formal, the set S can be described as

S = {(a, e) | a ∈ A, e ∈ E, (a, e) < L}.
While |L| = 1786, S grows to |S | = 2 710 125. S

could be reduced by filtering to pairs with identical ini-
tial letter. However, since L contains AEPs in which the
initial letters differ, this option is discarded. Since we
aim to test on a balanced data-set, where the proportion
of abbreviations among all terms approximately corre-
sponds to that in requirement texts, we test the presented
approaches on different Dα = L ∪ S α, where S α ⊂ S is
randomly chosen from S each time, under the condition
that |S α| = α∗|L|. To obtain an estimate for α, we extract
5702 NPs from 1934 requirements from 13 projects of
the PURE data-set [17]. To increase the recall, all words
(not only words in NPs) are checked by our extraction
rules from Section 5. In total, we extract 414 abbrevi-
ations and therefore estimate α = 5702/414 = 13.77.
This allows us to start with α = 14 as reference value.
are considered. We choose values (4, 8, 14, 28, 42)
by multiplying 14 with a factor γ ∈ ( 1

3 ,
1
2 , 1, 2, 3) and

rounding to the next bigger even number by ⌈14 ∗ γ⌉.
To avoid disadvantages for classifiers based on syntac-
tic and semantic similarity, thresholds are F1-optimised
for all α, given as thold in Table 4.

6.4.2. Evaluation Results
The results summarized in Table 4-6 show that the

FastText-based classifier performs poorly, in both, pre-
cision and recall. This might be because a word em-
bedding obtained from FastText can only inaccurately
represent a certain word sense if the corresponding ab-
breviation has multiple expansions with heterogeneous
meanings. Classifiers based on syntactic similarity mea-
sures have F1-scores between 75 and 90%—on aver-
age 82%, but are outperformed by all ILLOD variants,
which have between 93 and 97%, with ILLOD+ A be-
ing the best. Table 6 and Table 5 show that, in all cases,
all ILLOD variants achieve higher precision and recall
than the syntactic approaches.

For the task at hand, recall is more relevant than
precision, as false positives are generally easily iden-
tified by humans [11, 20]. Despite the general fo-
cus on recall, with the quadratic increase in term pairs
to check, a bad precision may influence the practical

feasibility of the tool [11]. With increasingly larger
α, a slight weakening of the precision for all IL-
LODs becomes apparent, as can be seen in Table 6.
Yet, it remains above 94%, while syntactic classifiers
achieve this only in one case (LD*, α = 8) and
generally show more heterogeneous results for differ-
ent α. Surprisingly, compared with the results from
Table 2, the classifier using the Levenshtein-Distance
generally outperforms the Jaro-Winkler-Similarity- and
Dice-Coefficient-based ones. Compared to ILLOD+A,
ILLOD+ B achieves a slightly higher precision for the
medium α-values (8,14). Yet, with 0.1 and 0.7% differ-
ence, this is negligible.

However, the recall of the feature-based classifiers,
as shown in Table 5, stays consistently high across
all α. Here, clearly the simpler variant A of IL-
LOD+ outperforms with 94.6% ILLOD (91.3%) and
ILLOD+ B (90.5%). Thus, we recommend ILLOD+ A
for usage in the envisioned clustering workflow. Yet,
in absolute terms, the recall needs to be compared to a
human achievable recall [20] to judge the effectiveness
of the tool. Due to the synthetic nature of the ground
truth in this experiment, no such data is available so
far. We plan to evaluate this in future research with
involvement of human test subjects. However, a first
indicator of human performance is the correct recog-
nition and expansion of abbreviations in medical texts,
where humans achieve a total accuracy from 74.5% to
88.7% (28.6% for layman without any assistance) [29].
Yet, experimental setup and the domain specific nature
of the dataset are not directly comparable to our data.

All of our results can be obtained within the supple-
mental material [35].

6.5. Evaluation on a Requirements Data-Set
In the following, we evaluate the performance of the

different classifiers with full-written text requirements.

6.5.1. Experimental Setup
To evaluate the practicability of ILLOD(+) for the in-

tended use case, we simulate the uncontrolled usage of
abbreviations within full-written text requirements from
real world projects, as illustratred in Fig. 2.

In preparation for this, terms that occur in at least two
requirements within the examined requirements set P
are extracted from the test data, which we read in as
.csv-files. This way, it is ensured that when substituting
one of these terms by an abbreviation in one require-
ment, its expansion still remains at some other position
in the dataset.

Subsequently, possible abbreviations are suggested
for these terms by independent persons not involved as
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Fig. 2: Process for Requirement Data Set Generation with automatically injected Abbreviations

authors in this work and not familiar with the details of
the approach. For this task, we invited research and in-
dustry partners.

To simulate the uncontrolled usage of abbreviations,
the abbreviations from the AEP list LP are used to re-
place their long-form in P and create a changed require-
ment set Pch. A term t from LP that appears in n re-
quirements is thereby randomly often replaced with its
proposed abbreviation, but at most n− 1 times to ensure
that detection of the corresponding AEP is still possible.

In the preliminary pilot experiment from our previ-
ous conference paper [13, 40] with 625 requirements
from 15 projects comprised in the PROMISE [14]
NFR data-set [15, 16], only one person created a
list LPROMIS E [40] of only 30 suggested abbreviation-
expansion pairs and manually replaced the respective
long forms in PPROMIS E creating Pch

PROMIS E [40].
For the new evaluation with the larger PURE [17]

requirements set PPURE , which consists of 1934 re-
quirements from 13 projects, several persons suggested
abbreviations for 518 of the total 1338 extracted and
cleaned2 terms. The abbreviations are collected anony-
mously in a collaborative environment. This way,
the abbreviations are more diverse in style and simu-
late more realistically uncontrolled use in collaborative
projects. We reference the list of these 518 AEPs with
LPURE . It can be obtained online [35].

It must be noted, that this test data from PURE as
well as PROMISE is originally collected from different
projects. Yet, we use them in both cases as if they were

2lemmatized with removed determiners

from one single project, to simulate the AEP detection
on a relative large requirement set.

To create several test sets Pch
PURE with more abbre-

viations and different portions α, abbreviations are in-
serted automatically to PPURE , as illustrated in the right
of Fig. 2. An automated routine substitutes a selected
number of long-forms from randomly chosen AEPs in
LPURE with their short-form. It uses a term-to-IDs-map
to ensure that requirements to be changed are found
faster. The automated abbreviation injection allows ex-
perimentation with different α parameters as well as
prevents bias through fixed (manual) selection of abbre-
viations. In the following, we discuss results for a ten-
fold random selection of 100 terms to substitute3, where
in each run a new random selction is made. Some fur-
ther results for other numbers of injections are discussed
in Section 9.2 with respect to scalability.

Finally, we apply the extraction approach from Sec-
tion 5 and the different AEP classification approaches
from Section 6 on the different Pch and check whether
they can find the inserted abbreviations and assign them
to their respective term. Since PPURE already contains
414 abbreviations, we expect the count of abbreviations
in Pch

PURE to be 514 after injection of 100 abbreviations
in each round of the tenfold experiment. Thus, as we ex-
tracted in total 5702 NPs from PPURE , we use adjusted
thresholds optimized with α = 11 ≈ 5702/514 for the
semantic and syntactic classifiers.

3The routine is included in the supplemental material as
“Generate new Test Data with 100 random AEPS from L2” [35].
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6.5.2. Evaluation Results
In the results, assignments of abbreviations to terms

are represented by generated AEP groups—clusters of
exactly one abbreviation and all its potential expansions.
Different sets of AEP groups are generated—one set for
each classification approach.

In the pilot experiment from our conference paper,
the simple ILLOD creates 115 term tuples, combined
to 51 AEP groups for the modified PROMISE data-set
Pch

PROMIS E . The extraction detects 29 of 30 inserted ab-
breviations, which corresponds to a detection recall of
29/30 = 96.6%, and ILLOD is able to indicate the
correct expansions for 25 of them, which corresponds
to an expansion recall of 25/29 = 86.2% and a total
recall of 25/30 = 83.3%. The other classifiers generate
more than twice as many term tuples (AEP candidates)
compared to ILLOD in order to indicate the correct ex-
pansion for fewer abbreviations—at maximum 22 (total
recall: 73.3%). More detailed results can be found on-
line [40].

To further validate these preliminary results, in the
extended evaluation with modified PURE data-sets
Pch

PURE , we investigate some key indicators:

# missed abbreviations number of inserted abbrevia-
tions, that could not be extracted. This value im-
plies detection recall 4.

# found abbreviations number of inserted abbrevia-
tions, that have their own AEP group.

# AEP groups number of generated AEP groups. One
AEP group is generated per abbreviation a for
which the Boolean “true” is returned for at least
one term t by the respective classifier.

∅ size of AEP groups Let Aextr be the set of abbrevia-
tions that we extracted from Pch and k the number
for the found abbreviations. The average size is
given by 1

k
∑

a∈Aextr |AEP(a)|, where AEP(a) refer-
ences the AEP group for the abbreviation a.

# matched abbreviations (=̂ total recall) number of
AEP groups that contain the correct term from LP.

expansion recall ratio of matched to detected abbrevi-
ations,thus total recall/detection recall.

cost-effectiveness ratio of matched abbreviations to the
average size of all AEP groups.

execution time computing time in seconds to generate
the set of AEP groups for the respective classifier.

The results of a first iteration show that the perfor-
mance of the FastText classifier is weak in terms of both,
cost-effectiveness and execution time. It matched only
12 of the 100 inserted abbreviations. With an execu-
tion time of 163 seconds the FastText classifier is almost
3 times slower than the second slowest approach, pre-
sented by ILLOD+B with 57 seconds. Detailed results
for this experiment can be obtained within the supple-
mental material [35]. To fasten up the next evaluation
with ten iterations in a row, we removed the FastText-
based one out of the list of classifiers to be evaluated.

The results of the tenfold evaluation are summarised
in Table 7. It shows the average results of the ten iter-
ations for all remaining classifiers, which we discuss in
the following.

The number of missed abbreviations is identical
over all approaches (∅ 33.5), as it depends on the ini-
tial abbreviation detection algorithm, as defined in Sec-
tion 5, which is uniformly applied in all cases. Thus,
the same abbreviations are missed for all AEP detec-
tion approaches. Nevertheless, it can be seen from this,
that abbreviation detection recall drops significantly on
full-written text requirements—66.5% on average in the
tenfold experiment compared to the 93.7% on L, as de-
scribed in Section 5. This needs to be further investi-
gated for future optimisations and compared to a human
achievable recall [20].

The average number of found abbreviations remains
similar for all approaches. Solely the Levenshtein-
Distance-based classifier constantly achieves slightly
weaker values than all other classifiers. It should be
noted that LPURE contains AEPs with different terms,
but represented by the same (homonym) abbreviation.
So in some cases, despite the injection of abbreviations
from 100 AEPs, the sum of found and missed abbre-
viations is smaller than 100. As these homonyms are
validly created by the independent subjects who con-
tributed to LPURE and it is very likely that such term-
clashes for abbreviations occur in a real world setting,
too, we did not artificially restrict the injection to dis-
joint abbreviations. This is the reason why detection
recall is calculated based on missed instead of found ab-
breviations.

The number of AEP groups is in all cases larger than
the number of 100 injected abbreviations. This is not
predominantly caused by false-positives of the abbre-
viation detection, but mainly due to the 414 abbrevia-
tions already contained in the original PPURE . We strive
for as few AEP groups as possible, to keep the man-
ual inspection manageable. Yet, also here, the results

4#detected abbreviations = #inserted – #missed abbreviations
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Table 7:
∅ Results for AEP Detection on Pch

PURE , after replacing the terms of 100 randomly selected AEPs from LPURE . LD, JWS, DC corresponds to
the different syntactic classifier in Section 6.2 (LD: Levenshtein-Distance, JWS: Jaro- Winkler-Similarity, DC: Dice-Coefficient) and ILLOD,
ILLOD+A, ILLOD+B corresponds to the feature-based classifiers (ILLOD, ILLOD+ A/B) in Section 6.3. Thresholds for syntactic classifiers are
F1-optimized for α = 11 ≈ 5702/(414 + 100).
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LD 360.6 62.7 33.5 26 39.1 21.4 0.842 15.57
JWS 482.5 66.0 33.5 55.8 83.9 67.23 1.215 15.43
DC 454.1 64.9 33.5 26.5 39.8 34.88 1.342 16.01
ILLOD 375.2 65.7 33.5 58.2 87.5 14.07 0.244 2.69
ILLOD+ A 378.7 65.7 33.5 60.8 91.4 10.73 0.178 58.67
ILLOD+ B 376.7 65.7 33.5 39.2 58.9 8.02 0.208 68.57

are of similar magnitude, with exception of the Jaro-
Winkler-Similarity- and Dice-Coefficient-based classi-
fiers, which produce notably more AEP groups. Gener-
ally, the absolute numbers above 360 groups appear too
high for realistic manual inspection. However it must
be noted, that this corresponds to 514 analysed abbrevi-
ations to resolve. As we also discuss in Section 9.2, we
do not expect such high numbers to be common in the
envisioned iterative application of the approach.

Concerning the average size of the AEP groups, we
assume smaller groups to be better, again, to keep the
manual effort for inspection low. Here, ILLOD+ B cre-
ates the on average smallest AEP groups, due to its
higher precision. With on average ≈ 8 entries, their
size is close to the number of elements humans can
typically process at once [21]. Yet, ILLOD+ A fol-
lows closely with ≈ 10, while all other approaches pro-
duce significantly larger groups. In particular the Jaro-
Winkler-Similarity-based classifier produces extremely
large groups (with ≈ 67).

In terms of matched AEPs, ILLOD+ A, which also
achieves the best recall results in Section 6.4, is able
to match the most abbreviations with a total recall of
60.8%, closely followed by the simple ILLOD with
58.2%. Yet, in absolute terms, this needs to be com-
pared to a human achievable recall [20] to judge the
performance of the tool, as already discussed above in
Section 6.4. Again, due to the synthetic nature of the
ground truth in this experiment, no such data is avail-

able and to the best of our knowledge, in the context of
requirements engineering, there is no data available to
compare our approaches to.

Humans achieve between 74.5 and 88.7% total accu-
racy in simultaneous recognition and expansion of ab-
breviations on medical texts if they have domain knowl-
edge or access to a search engine [29]. The weaker per-
formance of our approach is due to relatively low re-
call for abbreviation detection (see above). Yet, medical
text are not requirements and presumably official abbre-
viations are more recognizable to people with domain
knowledge. Abbreviations in our dataset are not domain
specific and potentially of more heterogeneous style, as
subjects were explicitly asked to not actively research
for known standard abbreviations, but create their own
suggestions. Further, stakeholders that deal with re-
quirements are not always domain experts. The total
accuracy for layman on medical texts without any assis-
tance is with only 28.6% [29] still significantly lower.
In addition, the experiments with humans only contain
very few abbreviations in each case [29]. Further, accu-
racy and recall can only be compared if AEP groups are
sufficiently small for the correct expansion to be recog-
nised instantly. The figures are thus not really compa-
rable and should at most be seen as indicators. Future
work should therefore focus on improving the approach
of detecting abbreviations on full written text on the one
hand, and on discovering realistic human performance
indicators for requirements texts on the other hand.
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The expansion recall varies from 39.1% for the LD-
classifier to 91.4% for the ILLOD+ A classifier, which
is followed by the simple ILLOD as second best with
87.5%. ILLOD+ A and ILLOD, both thereby lie in the
range of expansion accuracy achieved by humans for
medical texts (82.8 to 97.1%) [29].

In combination, ILLOD+ A has on average the best
cost-effectiveness. All ILLOD variants clearly outper-
form the syntactic classifier-based approaches in this re-
gard and the simple ILLOD closely follows its extended
variants. So overall, consistently with results from Sec-
tion 6.4, we consider ILLOD+ A the best choice among
the examined classifiers.

However, the simple ILLOD has by far the lowest
execution time of all approaches with around 3 sec-
onds. The approaches based on syntactic classifiers,
meanwhile all need around 16 seconds. Both ILLOD+
variants need—with exception of the already discarded
FastText-classifier—by far the longest with about 60-
70 seconds. All these experiments are conducted on a
consumer notebook (Intel i7-10750H, 32GB RAM). We
examine execution time because we assume expansion
algorithms to be used in tools that align glossary and
requirement texts in several iterations, where the num-
ber of undefined terms and abbreviations decreases as
the requirements stabilise, as shown in Fig. 1. Most fre-
quently, this alignment can be triggered each time af-
ter adding or editing requirements. Considering its low
execution time and comparably good performance, the
simple ILLOD might be the best choice in time critical
cases. We briefly discuss scalability in Section 9.2.

Standard deviation σ over all ten iterations indicate
that all these averages reasonably represent the actual
performances. In addition, the ranking of best and worst
for all indications remains the same, also in further ten-
fold validation runs. This more detailed data can be ob-
tained from the supplemental material [35].

7. Integration into Clustering Workflow

On the lines of Wang et al. [22], the preceding re-
sults confirm that different types of synonyms require
different adapted approaches to calculating similarity,
in particular for AEP-detection. We experimentally
tested different approaches to add AEP candidates to
term clusters. Different problems emerged depending
on the methods used. E.g., approaches with overlapping
clusters have problems to select terms that should be
in many different clusters according to a given ground
truth. A rationale for this is given in Section 7.2. Other
methods that generate clusters with ordinary terms and
AEP-candidate term tuples, are confusing to humans,
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Fig. 3: Glossary term clusters of ordinary terms (light ellipses) and
overlay cluster for abbreviation “AR” with its possible expansions
(dashed circle) for a “vehicle parts finder system”.

when the precision of AEP recognition is too low. In the
following, we introduce the approach that has the most
advantages, as listed in Section 9.3. We do not intend
to evaluate different clustering algorithms, but rather to
show how two already optimized clustering results—
one for ordinary terms according to Arora et al. [11]
and one for AEP groups—can be merged.

7.1. Merged Clustering Solution

Arora et al. [11] create their ground truth clusters
around a single concept c from the project’s domain
model, where the clusters also contain variants of terms
that are conceptually equivalent to c and terms that are
related to c according to the domain model.

Terms within individual AEP groups have a different
relation to each other—indicating that two terms can be
used as an expansion/definition for the same, as yet un-
defined, abbreviation. Thus, AEP groups differ in type
from the ideal clusters of Arora et al. [11]. As AEP
groups are designed to indicate probable ambiguities,
they should not be separated in a merged cluster solu-
tion, which should be easy to read.

As the ordinary terms within the individual AEP
groups do not have to be conceptually related to each
other according to the domain model, we must assume
that they are distributed over the different clusters of the
cluster solution generated for the ordinary terms.
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This leads to the conclusion that AEP groups in a
merged cluster solution must be considered as so-called
overlay clusters, which implies that the AEP groups are
included as additional clusters and respective AEP can-
didates are not inserted into the clusters for the ordinary
terms. Fig. 3 shows an example for this, based on the re-
quirements from a “Vehicle Parts Finder System” part
of the PROMISE data-set [15] as project #5.

7.2. GTE Processing Steps

Considerations from the previous section lead us to
propose the approach for the integration of ILLOD+
into a given GTE tool, as outlined in Fig. 4.

First, abbreviations are extracted from the given text,
as described in Section 5 and then reduced to only con-
sider yet undefined ones. As an example, assume that
A = {“IP”, “AR”} was extracted in this step.

Further, general glossary term candidates are ex-
tracted through noun chunking, e.g., T = {“audit re-
port”, “AP agency”, “adjuster role”, “automatic AR”}
and then cleaned from the abbreviations to a set of ordi-
nary terms, e.g., OT = {“audit report”,“adjuster role”}.

ILLOD+ is then used to cluster abbreviations with
their potential expansions into AEP groups. To continue
our example, with α = “AR”, we would generate the
AEP group Gα = {“AR”, “audit report”, “adjuster role”,
“automatic AR”}, with TαILLOD+ = {“AR”, “audit report”,
“adjuster role”} and Tα = {“automatic AR”}. After-
wards a general synonym clustering approach, such as
REGICE [11], is used to cluster the ordinary terms.

As AEP groups are added into the final cluster solu-
tion in the last step, this will produce overlapping clus-
ters. To evaluate the solutions generated by this ap-
proach, in addition to an ideal cluster solution, a metric
is required to determine the score of agreement between
an overlapping clustering solution and an overlapping
ground truth—the ideal cluster solution. The OMEGA-
Index Ω, a metric based on pair counts, introduced by
Collins et al. [41], can achieve this.

Another argument for generating disjoint clusters of
ordinary terms in the second-last step, besides the ones
given by Arora et al. [11], is indicated byΩ. It shows the
difficulty of making overlapping cluster solutions more
similar to the ground truth clustering. For calculation,Ω
uses the contingency table C. The entries ci, j ∈ C indi-
cate the number of all pairs that appear in exactly i clus-
ters in the solution and in exactly j clusters in the ground
truth. A necessary condition to increase Ω between a
generated cluster solution and a given ground truth is
to modify the cluster solution so, that their agreement
(sum of all diagonal values in C) is increased and their

disagreement (sum of all values outside the diagonal) is
decreased. Finally, an enlargement of the matrix would
cause only a linear increase in the number of agree-
ment fields, while the number of disagreement fields in-
creases quadratically. Therefore, we propose the com-
bination of disjoint clustering with separately calculated
AEP group overlay clusters as introduced in Section 7.1.

8. Threats to Validity

In the following, we discuss threats to validity [42]
of our abbreviation detection, the ILLOD+ approach to
AEP detection, its evaluation, as well as considerations
on its integration to glossary term candidate clustering.

Repeatability We provide our source code and data-
sets, as well as additional evaluation data [35].

Construct Validity Our approach to glossary build-
ing is based on noun phrases, as introduced in prob-
lem statements (A)/(B). Although, other terms might
be defined in a glossary, too, this is the prevalent ap-
proach [18, 19]. Threats to the identification of noun
phrases are neglectable, as we directly work on ex-
tracted terms obtained via well known and reliable NLP
techniques, proven for this task [10, 11]. To disam-
biguate terms based on synonym, homonym, and hy-
ponym detection (B1) and apply this for term consoli-
dation in requirements engineering are well established
practices [3, 4, 6, 7, 18]. Towards this more general
goal, homonyms and hyponyms are not detected explic-
itly. Yet, the analyst might be enabled to spot some dur-
ing manual inspection of the clusters, although in gen-
eral this problem needs to be addressed in a separate
solution. For synonyms in ordinary terms, we assume
working solutions from related work [11]. However, fo-
cus of this work is on abbreviation-expansion pair detec-
tion, as defined in (B1.1). Here, threats to construct va-
lidity may apply to the general assumptions on how ab-
breviations can be recognized and how they are formed
from their expansions, since this is manifold [31]. How-
ever, threats are neglectable, as parameters for the iden-
tification of abbreviations, as well as features for expan-
sion detection, are based on known features [23, 32, 33]
retrieved and optimised on real world examples that can
be adjusted based on larger data-sets or to fit domain
specific peculiarities.

Internal Validity To minimize the risk of internal va-
lidity threats to our experiments, we tested the similar-
ity measures and classifiers with the same cleaned list
of defined abbreviations and under several portions α
of abbreviations within the text. Semantic and syntac-
tic similarity measures, are tested with different opti-
mised thresholds. Generally the use of thresholds to
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[𝒕𝒕 contains a  and t ∉ 𝑶𝑶𝑶𝑶]

[𝒕𝒕 contains
some 𝒂𝒂 ∈ 𝑨𝑨] 

Extract set of abbreviations 𝑨𝑨

Reduce 𝑨𝑨 to undefined abbreviations

Extract set of glossary term candidates 𝑶𝑶
(as textual normalizations of noun phrases through noun-chunking)

Filter out t from 𝑶𝑶 to form 𝑶𝑶𝑶𝑶
𝑶𝑶𝑶𝑶 = 𝒕𝒕 ∈ 𝑶𝑶 𝒂𝒂 ∉ 𝒕𝒕 ∀𝒂𝒂 ∈ 𝑨𝑨}

Generate an AEP group 𝑮𝑮𝒂𝒂 of possible expansions t ∈ 𝑶𝑶𝑶𝑶 (via ILLOD+)
𝑮𝑮𝒂𝒂 = 𝒂𝒂 ∪ 𝑶𝑶𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰+𝒂𝒂 𝑶𝑶𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰+𝒂𝒂 = {𝒕𝒕 ∈ 𝑶𝑶𝑶𝑶|𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰 + 𝒂𝒂, 𝒕𝒕 = 𝑶𝑶𝑻𝑻𝑻𝑻𝑻𝑻}

Extend 𝑮𝑮𝒂𝒂 with 𝒕𝒕
𝑮𝑮𝒂𝒂 = 𝒂𝒂 ∪ 𝑶𝑶𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰+𝒂𝒂 ∪ 𝑶𝑶𝒂𝒂 𝑶𝑶𝒂𝒂 = 𝒕𝒕 ∈ 𝑶𝑶 ∖ 𝑶𝑶𝑶𝑶 𝒂𝒂 ∈ 𝒕𝒕}

Generate disjoint clusters for the ordinary terms from𝑶𝑶𝑶𝑶

Add AEP groups as additional clusters to the clusters of ordinary terms

For 𝒕𝒕 ∈ 𝑶𝑶iterative

[else]

For 𝒂𝒂 ∈ 𝑨𝑨

For 𝒕𝒕 ∈ 𝑶𝑶

iterative

iterative
[else]

Fig. 4: Proposed Workflow for the Integration of ILLOD+ into Term Clustering of a given GTE Tool

evaluate classifiers that provide a ranking is not com-
mon, as it has the drawback of limited adaptability when
new term pairs need to be classified. Yet, the pre-
sented feature-based classifiers are binary boolean and
do not provide a ranking. This needs to be reflected in a
proper evaluation approach for comparison—the rank-

ing within the resulting AEP groups is irrelevant. Al-
ternatives to thresholds, e.g., based on percentiles, are
more suitable for optimization in terms of precision or
recall, while we use F1-optimisation, and, more impor-
tantly, they have some drawbacks with respect to the
clustering approach we aim at. E.g., fixed cutoffs also
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fix the size of the AEP group, while flexible cutoffs de-
pend in a similar way on optimisation on the training
data, as thresholds, an other means like mean average
precision may be suitable to compare the result qual-
ity, but would not restrict cluster size at all. Since we
want to keep the number and size of clusters manage-
able and the similarity values in different clusters com-
parable, we believe that using fixed thresholds for F1
optimisation is an adequate strategy, assumed that the
training set (L with |L| = 1786 [34]) is large and hetero-
geneous enough to provide a stable threshold, also for
yet unseen term pairs.

External Validity Parameters and features for abbrevi-
ation and AEP detection are context and language spe-
cific. We discus limitations of our approach in more
detail in Section 9. However, the list L [34] we used
for optimisation and evaluation is open community built
without guidelines and, thus, heterogeneous abbrevia-
tion styles not limited to acronyms. Yet, it is domain
specific. Further, we only used English terms. Parame-
ters and accuracy might vary for other languages, e.g., in
German rules for noun-splitting differ. Meanwhile, pa-
rameters can be easily adapted through optimisation on
other data-sets. Similar, features evaluated by ILLOD+
can be easily adapted to domain specific patterns. Yet,
the tests on the PROMISE and PURE data-sets with re-
quirements from more than ten projects from different
domains, indicate some general applicability, but also
show that optimisation on real requirements data would
be reasonable. We plan to verify and optimise our ap-
proach on further data-sets and in a realistic environ-
ment in future research.

Conclusion Validity To mitigate threats, all optimisa-
tion is conducted on the known list L, while test data
is kept separately. For the tests on the synthesized
set, test sets are retrieved randomly. For the evalu-
ation on real requirements texts, the modifications to
the PROMISE & PURE data-sets are randomly inserted
based on abbreviations formed by external independent
persons without exposure of details to the authors. The
considerations on cluster integration are based on re-
lated work [11] and initial experiments on optimization
of different clustering algorithms with the OMEGA-
Index. However, we plan to substantiate this in future
experiments.

9. Discussion

In the following, we discuss the main limitations,
scalability and strengths of our approach.

9.1. Limitations of Detection
As can be seen from the precision and recall results

in Section 5, our abbreviation detection approach has
some limitations due to the heterogeneous nature of ab-
breviations. To achieve a high precision and recall for
lower cased abbreviations is more challenging than for
those that have a relative high portion of capital letters.
However, lower case abbreviations are in general rare—
only 17 of 1786 within L. The only one of those that
is not detected by our approach, is “kilo”, which is as
decimal prefix in the metric system a commonly used
word and not in the classical sense an abbreviation of
“one thousand”. Nevertheless, there are abbreviations
that exceed the parameters of our detection. E.g., two
examples from the German armed forces to abbreviate a
unit of organization and an employment title exceed the
limits of our mixed-case detection: First, (“SABCAb-
wGSchAufg”, “Schule ABC-Abwehr und Gesetzliche
Schutzaufgaben”) is with 15 letters longer than our limit
of 13. Second, (“Schirrmstr”, “Schirrmeister”) has with
0.1 a too low portion of capital letters—this is presum-
ably typical for simply truncated words. We address
truncated words only for completely lower cased words,
as more common in the English language. It shows that
parameters need to be adjusted or some specific rules
have to be added for other languages and/or domains
with notably different guidelines.

However, detection on full written text is more diffi-
cult, as can be seen in Section 6.5 (Table 7), and brings
some challenges that require some adaptions or further
restrictions for AEP matching. I.a., ILLOD+ rejects ab-
breviation candidates with length > 15, when the pro-
portion of capital letters is ≥ 0.9. This is necessary, as
the list of all valid character distributions grows expo-
nentially for longer words. While generally, such long
uppercase abbreviations are rare corner cases within the
data examined, the criteria may fit false positives where
ordinary terms are written in uppercase letters, e.g., for
cooperate design or accentuation. For example, without
this restriction, the term “SYSTEM INTEGRATION”
extracted from the PURE requirements is falsely classi-
fied as an abbreviation bi-gram and causes ILLOD+ to
exceed the computation resources of a consumer note-
book (Intel i7-7700HQ, 64GB RAM).

The, compared to the high recall in Section 5, rather
low numbers of found abbreviations in Section 6.5 re-
veal the difficulties of abbreviation detection in full
written text and with freely invented, heterogeneously
styled abbreviations. This shows, that future optimisa-
tions need to be based on training data from full text
requirements and not beforehand cleaned abbreviation
lists like L. To avoid bias, we used the abbreviations
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suggested for the terms extracted from the PURE re-
quirements solely for testing. More similar data would
be necessary to investigate potential for improvements
and establish a benchmark for testing. As a first step, we
provide our data-set [35] for replication. However, it is
also necessary to evaluate the approach in a realistic en-
vironment and compare to human achievable recall [20]
in future experiments with stakeholder involvement.

9.2. Scalability

The presented classifiers are not explicitly optimised
with respect to time performance. Nevertheless, we dis-
cuss some preliminary observations.

As discussed in the previous sub-section, the expo-
nential growth of the distribution map in ILLOD+ can
lead to performance issues. However, we assume such
long abbreviations to be generally the minority and only
scattered within realistic data.

From the tenfold experiment data with 100 injected
abbreviations to the PURE requirements in Section 6.5,
we learn, that the basic ILLOD approach is the fastest,
followed by the syntactic classifiers, while both IL-
LOD+ variants need the most execution time on a con-
sumer notebook (Intel i7-10750H, 32GB RAM). In ex-
periments on a different machine (consumer notebook,
Intel i7-7700HQ, 64GB RAM), the absolute execution
times are increased by factor 10, while the ordering and
relative difference stay the same. We suspect some de-
pendencies on hardware and virtual machine settings.
This needs to be further investigated in a thorough in-
spection prior to extended time-performance tests.

Further, we conduct the same experiment as de-
scribed in Section 6.5, again on the same system (In-
tel i7-10750H, 32GB RAM), but with different numbers
of injected abbreviations corresponding to different α.
Again, the FastText-based classifier is excluded, as its
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performance is comparably poor, like described in Sec-
tion 6.5. Fig. 5 plots the results in execution time. It
can be seen, that the order of the approaches is main-
tained over the different amounts of injected abbrevi-
ations. While the simple ILLOD is by a considerable
margin the fastest approach, it also maintains a similarly
low execution time over all amounts of abbreviations.
All other classifiers notably increase in time above 200
injected abbreviations5. This effect is most prominent
for the ILLOD+ variants. Thus, for time critical appli-
cations, the simple ILLOD appears to be the best choice,
considering its other performance indicators being com-
parably similar to its extended versions. However, un-
der consideration that the 400 injected abbreviations add
up to a total of more than 800 abbreviations to resolve
for the examined data-set, an absolute time of around 2
minutes might be acceptable. In particular, as the en-
visioned workflow would build up the abbreviation list
iteratively as the requirements are written, we do not
expect such high numbers to be common. In rarer cases
of a posteriori analysis of existing legacy documents,
longer execution times might be acceptable by users.

Likewise, the number of AEP groups grows con-
stantly with higher numbers of abbreviations, what is
to be expected. As already mentioned in Section 6.5,
the high numbers of above 300 observed in the respec-
tive experiments and even more above 500 for 200 In-
jections, are not attractive for a manual inspection ap-
proach. However, as stated above, in a realistic use
case with the suggested iterative workflow, these cases
should be rare. Yet, as the requirements from the PURE
data-set are processed as one large test-set, we lack an
estimate for realistic amounts in iterative rounds. Fu-

5Note that the PURE requirements already originally contain 414
abbreviations (see Section 6.4).
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ture work should cover some case study with user feed-
back from a real project setting with iterative applica-
tion. Such an evaluation in a real world project setting
with actual user involvement will be necessary to verify
the practical relevance of our approach. Further, evalua-
tion on different data sets with different sizes of require-
ments or respective noun phrases that are not abbrevia-
tion would be useful to gain deeper insights to perfor-
mance scalability.

Nevertheless, the average cluster size, as shown in
Fig. 6, remains similar over all injection rates, even on
the full large data-set. Here, the ILLOD+ variants pro-
vide reasonable sizes with around 8 and 11, closely fol-
lowed by the simple ILLOD with sizes around 14.

As the number of matched abbreviations increases
with the total number of abbreviations, the near to con-
stant average cluster size leads better cost effectiveness
for higher injection rates, as shown in Fig. 7. This is in
line with the higher precision for lower α observed in
Section 6.4.

9.3. Advantages of the Approach

As motivated in Section 1 and 2, generally the use
of glossaries can support in all three dimensions to im-
prove an opaque system comprehension into a com-
plete system specification, as defined by Pohl [1]: con-
tent, documentation, and agreement. More specific,
the outlined process of term consolidation supports the
glossary maintenance, as decribed based on Pohl and
Rupp [4] in Section 2, addressing the dimensions of
documentation and agreement. Based on our findings,
the proposed workflow has the following advantages:

(1) By using AEP groups, we avoid to decide which
pair of terms belong together automatically, which
is a challenging problem [43].

(2) AEP groups have ergonomic as well as procedural
advantages:

(a) The analyst is motivated to build the list of
abbreviations in parallel.

(b) The analyst has direct insight into how an
abbreviation could be expanded alternatively,
as alternative expansions are likely to be en-
countered in the same cluster, and thus the
analyst gets another opportunity to reduce
ambiguities.

(3) Since the AEP groups are added to the generated
cluster of ordinary terms in a post-processing step
from a clustering point of view, the AEP groups
ensure that unknown abbreviations and proposed
expansions are placed in the same cluster, regard-
less of the clustering algorithm.

(4) Adding additional AEP groups lead to a final result
with overlapping clusters, but mitigates the disad-
vantages of such, as these additional clusters are of
different type than those of the ordinary terms.

(5) Using a feature-based approach to AEP detection,
as ILLOD+, provides high flexibility to adjust to
domain specifics, as new rules can easily be added.

We conducted preliminary experiments with hybrid
approaches to AEP detection, combining different types
of classifiers. E.g., to check the initial letter equivalence
rule contained in ILLOD in a pre-processing step for all
syntactic measures. This leads to increased accuracy
for this type of classifier, as can be learned from the de-
tailed evaluation data [35]. However, due to the nature
of feature-based approaches of combining and poten-
tially weighting different rules/features, it appears to be
more plausible, to potentially integrate syntactic mea-
sures as additional rules here, rather than to outsource
other features to excessive pre-processing.

Further, we assume our approach not only to be rele-
vant for early harmonization of requirements document
terminology, but also if glossary and abbreviation list
have to be built over several documents spanning mul-
tiple project phases and/or involved organizations and
domains, as for distributed specifications, as described,
e.g., by Großer et al. [44]. In addition, the different
clusters for different synonym types not only help the
analyst to select a preferred term, but also to build syn-
onym groups in more advanced glossaries or thesauri
with cross references [18] and context specific group-
ing. The clustering can help to identify such contexts.
Further, in such an advanced glossary system, abbre-
viation and feature-based AEP detection could, e.g. be
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integrated into the term search. If a search string is iden-
tified as a potential abbreviation, the search can be nar-
rowed to abbreviations or, if it is not yet defined, return
potential expansions as search result, which would po-
tentially not be found by a classical syntactic search. We
plan to investigate this in currently ongoing research.

Moreover, the feature-based AEP detection through
ILLOD+ could be of use for tasks beyond term consol-
idation for glossaries. For example, tracing approaches
that map entities from different models via similarity of
element names, as e.g., Peldszus et al. [45, 46] do for
data-flow diagrams and source code, could be enhanced
to better cope with abbreviations.

10. Conclusions

Early glossary building and synonym detection is rel-
evant to reduce ambiguity in requirements sets, e.g.
through definition of preferred terms [18]. We demon-
strate that different types of synonyms [18] need differ-
ent treatments in detection. In particular, classical syn-
tactic and semantic similarity measures perform poorly
on abbreviations, as we show with our experiments in
Section 6. With our ILLOD+ tool, we present a new
feature based approach to AEP detection, which outper-
forms those classic approaches. It is also more flexi-
ble, as rule sets can be easily adapted to context spe-
cific characteristics, e.g., guidelines or languages. Ini-
tial experiments indicate that investigation of hybrid ap-
proaches might be promising, though. We further pro-
pose how to integrate groups of abbreviations and their
potential expansions to clusters of ordinary glossary
term candidates as additional separate type of clusters.

This enables analysts to build the abbreviation list
in parallel to the glossary and start this process early
already on preliminary requirements. Further, we as-
sume our approach not only to be relevant for early
harmonization of requirements document terminology,
but also if glossary and abbreviation list have to be
built over several documents spanning multiple project
phases and/or involved organizations and domains [44].
In addition, different clusters for different synonym
types can support the building of synonym groups for
glossaries or thesauri with cross references [18] and
context specific grouping as well as domain models.
The results of our experiments on synthetic datasets are
promising and open the door for next step evaluations in
realistic environments with practical user feedback.
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