
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This is a preprint version of:
H. Hasso, K. Großer, I. Aymaz, H. Geppert, and J. Jürjens, “ILLOD Replication Package: An Open-Source Framework for Abbreviation-Expansion Pair
Detection and Term Consolidation in Requirements,” in 31th IEEE International Requirements Engineering Conference (RE’23), 2023, pp. 369–370.
DOI 10.1109/RE57278.2023.00056

ILLOD Replication Package: An Open-Source
Framework for Abbreviation-Expansion Pair

Detection and Term Consolidation in Requirements
Hussein Hasso

Fraunhofer FKIE
Wachtberg, Germany

hussein.hasso@fkie.fraunhofer.de

Katharina Großer
University of Koblenz

Koblenz, Germany
grosser@uni-koblenz.de
0000-0003-4532-0270

Iliass Aymaz
Fraunhofer FKIE

Wachtberg, Germany
iliass.aymaz@fkie.fraunhofer.de

Hanna Geppert
Fraunhofer FKIE

Wachtberg, Germany
hanna.geppert@fkie.fraunhofer.de

Jan Jürjens
University of Koblenz

Koblenz, Germany
juerjens@uni-koblenz.de

Fraunhofer ISST
Dortmund, Germany

0000-0002-8938-0470

Abstract—ILLOD is a tool for detecting abbreviation-
expansion pairs (AEPs) in requirement sets. It utilizes syntactic
features such as Initial Letters, term Lengths, Order, and
Distribution of characters to determine if a term is a potential
long form to a given abbreviation. The artifact bundles all
source code and data resources to replicate evaluation results
presented for ILLOD in two research papers published at the
REFSQ2022 Conference and in the Information and Software
Technology (IST) journal. In addition, ILLOD can be used
to detect AEPs, perform abbreviation detection, and the input
data-set can be used for further research in requirements
engineering or other related fields. The repository is organized
into different directories containing data, Python sources, and
notebooks for experiments and evaluations. Detailed instructions
are provided to load and use the tool on a local system, and
the results generated by ILLOD are stored in output files.
The tool demonstrates its effectiveness in detecting AEPs and
consolidating glossary terms, and the evaluation results provide
insights into the performance of different classifiers. The artifact
repository is a valuable resource for researchers and practitioners
in the field of requirements engineering and related areas.

Index Terms—Requirements Engineering, Glossary Term Ex-
traction, Abbreviation-Expansion Pair Detection, Synonym De-
tection, Requirement Data-Set, Abbreviation Data-Set.

I. INTRODUCTION

Abbreviation-expansion pairs (AEPs) play a crucial role in
requirement engineering, specifically in glossary term extrac-
tion and consolidation in requirement documents. Detecting
and understanding these AEPs is essential for ensuring the
quality and clarity of requirements. Hasso et al. [1] proposed
an approach called ILLOD (Initial Letters, term Lengths, char-
acter Order, and Distribution) for identifying potential long
forms to a given abbreviation by analyzing syntactic features
of both terms, which extends the algorithm findBestLongForm

presented by Schwartz and Hearst [2]. The approach has been
further enhanced in subsequent work to improve the accuracy
and effectiveness of AEP detection [3]. Here, the detection of
abbreviations is refined, to better cope with heterogeneous ab-
breviation styles—particularly, lower-cased abbreviations and
bi-grams of two consecutive abbreviations, while through
recursive calls and a more sophisticated character distribution
analysis, the extended ILLOD+ achieves higher recall and
precision. These advancements provide a valuable tool for
researchers and practitioners in requirements engineering.

The artifact presented in this paper is available on
GitHub1and Zenodo2 [4]. The artifact repository consists of
Python sources, data files, and evaluation scripts that can be
used to reproduce the results presented in both research papers
by Hasso et al. [1], [3]. In particular, the extended experiment
with a data-set of 1934 requirements from PURE [5] and more
than 500 potential abbreviations presented in the journal paper
published in Information and Software Technology (IST) [3]
is made more accessible. In addition, it is facilitated to run
the tool with custom data-sets to enable usage beyond the
experiment reproduction. The repository provides a detailed
README file with instructions on how to use the tool,
reproduce the experiments, and load custom data-sets.

II. OVERVIEW AND STRUCTURE OF ARTIFACT

The ILLOD REFSQ and ILLOD IST directories contain
the original replication sources (Jupyter notebooks) and data
for the respective research papers [1], [3].

The MAIN directory is the core of the presented artifact and
contains the necessary files to run ILLOD, ILLOD+ and other

1https://github.com/AEPForGTE/ILLOD
2https://zenodo.org/record/8123990



AEP classifiers, as well as experiments for their evaluation.
This directory depends on the ILLOD IST directory. The
sources in MAIN make three functions available:

1) Create a test data-set: Replace long-form terms in a
requirement set with abbreviations from predefined lists
to create a modified requirement set.

2) Replicate Evaluation: Execute and evaluate different
classifiers for AEP detection, using the modified re-
quirement set based on the analysis of created AEP
groups (clusters that link a single abbreviation with all
its identified potential expansions).

3) Use ILLOD for custom data-set: Optionally, extract
AEP groups from a user-specified file.

The input data directory contains the input files required
to run the different AEP classifiers, including ILLOD and
ILLOD+. It additionally contains the PURE [5] requirements
data-set, a list of more than 500 abbreviations and their
corresponding long forms, derived from noun-chunks of the
PURE data-set, and optionally additional user-specified files
for AEP detection on custom data-sets.

Two further lists of AEPs can be found in the IL-
LOD REFSQ directory (based on [6] and noun-chunks ex-
tracted from the PROMISE [7] NFR data-set [8]).

After execution of main.py, placed in the MAIN direc-
tory, the output data directory will contain new output
files with the detected AEP groups, as well as the modified
requirements data-set with injected abbreviations. The number
of randomly chosen noun-chunks to exchange through an
abbreviation can be specified between 0 and 400. A similar
smaller and manually created data-set based on requirements
from the PROMISE NFR data-set [8] can be found in the
ILLOD REFSQ directory. The src directory contains the
Python source code with helper functions for abbreviation
and term extraction and three further components needed for
reproduction purposes or further customization:

The generate uncontrolled abbreviations component re-
places terms with abbreviations in the input requirements. It
reads input requirements from “pure requirements.csv” and
abbreviation-replacement data from “LF-SF Pairs.csv”.

The build AEP groups component detects AEP groups by
extracting abbreviations and terms from the requirements. It
builds AEP groups by associating abbreviations with candidate
long forms identified within the full term list by the different
AEP classifiers (LD, JWS, DC, ILLOD, and the two ILLOD+
variants ILLOD A & ILLOD B) [3].

The evaluate ILLOD component performs a ten-fold vali-
dation with respective 100 randomly injected abbreviations. It
evaluates all mentioned AEP classifiers, counting true and false
suggestions for each found abbreviation and their respective
long forms on average over all ten passes.

In summary, the repository enables easy replication of
experiments and utilization of ILLOD & ILLOD+. It provides
data, source code, and evaluation results, along with instruc-
tions for reproducing the results, also with custom data-sets.

III. FUTURE USE OF THE ARTIFACT

The artifact provides technical means to automatically
identify abbreviation-expansion pairs (AEPs) to facilitate the
consolidation of terms. The artifact can be used for:

a) Reproducing experiments from [1] and [3].
b) AEP detection using ILLOD(+).
c) Abbreviation detection algorithm implementation.
d) Accessing and utilizing the provided input datasets for

further AEP research in requirements engineering or other
application domains.

ILLOD+ serves as a benchmark for enhanced AEP detection
approaches, and there is potential for improvement by adapting
it to domain-specific patterns, supporting multiple languages,
and enhancing initial abbreviation detection.

Integration of ILLOD+ into existing requirement engineer-
ing tools and workflows can enhance abbreviation identifica-
tion and term consolidation, making the process more efficient
and reliable for software engineers and requirement analysts.

In conclusion, ILLOD+ contributes to requirement engi-
neering by facilitating term consolidation and abbreviation
identification. With further enhancements and integration, IL-
LOD+ has the potential to become a widely adopted approach
for improving the quality and unequivocal understanding of
requirement documents.

ACKNOWLEDGMENT

We thank the volunteers who provided us with abbreviation examples for
our experiments. Shout out to Jupyter :)

This work is supported by project EnTrust in the research initiative of the
Ministry of Science and Health, Rhineland-Palatinate, Germany and European
Space Agency’s (ESA) NPI program (No. 4000118174/16/NL/MH/GM).

REFERENCES

[1] H. Hasso, K. Großer, I. Aymaz, H. Geppert, and J. Jürjens,
“Abbreviation-expansion pair detection for glossary term extraction,” in
Requirements Engineering: Foundation for Software Quality, V. Gervasi
and A. Vogelsang, Eds. Springer International Publishing, 2022, pp.
63–78. [Online]. Available: https://doi.org/10.1007/978-3-030-98464-9 6

[2] A. S. Schwartz and M. A. Hearst, “A simple algorithm for
identifying abbreviation definitions in biomedical text,” in Biocomputing
2003. World Scientific, 2002, pp. 451–462. [Online]. Available:
https://doi.org/10.1142/9789812776303 0042

[3] H. Hasso, K. Großer, I. Aymaz, H. Geppert, and J. Jürjens, “Enhanced
abbreviation–expansion pair detection for glossary term extraction,”
Information and Software Technology, vol. 159, p. 107203, July 2023.
[Online]. Available: https://doi.org/10.1016/j.infsof.2023.107203

[4] H. Hasso, K. Großer, I. Aymaz, H. Geppert, and J. Jürjens. ILLOD: A
Tool for Abbreviation-Expansion Pair Detection in Natural Language Re-
quirements. [Online]. Available: https://doi.org/10.5281/zenodo.8020980

[5] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “Pure: A dataset
of public requirements documents,” in 25th IEEE International
Requirements Engineering Conference (RE’17), 2017, pp. 502–505.
[Online]. Available: https://doi.org/10.1109/RE.2017.29

[6] Computer Hope, “Computer acronyms and abbrevia-
tions,” 2021, visited on 10/16/2021. [Online]. Available:
https://www.computerhope.com/jargon/acronyms.htm

[7] J. Sayyad Shirabad and T. Menzies, “PROMISE software
engineering repository,” School of Information Technology and
Engineering, University of Ottawa, Canada, 2005. [Online]. Available:
http://promise.site.uottawa.ca/SERepository/

[8] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements Engineering,
vol. 12, no. 2, pp. 103–120, 2007. [Online]. Available:
http://ctp.di.fct.unl.pt/RE2017/downloads/datasets/nfr.arff


