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Abstract
1. The hyporheic zone is an important habitat for benthic invertebrates and early-

developmental stages of gravel spawning fish. However, the eutrophication of 
running waters and, in turn, the excessive periphyton biomass leads to its biologi-
cal clogging. The result of these processes is oxygen depletion and a reduction in 
the habitat quality of the hyporheic zone.

2. This study assessed whether top-down effects of two important European river 
fish species, the large herbivorous cypriniform common nase (Chondrostoma nasus, 
L.) and the large omnivorous cypriniform European chub (Squalius cephalus, L.), can 
reduce eutrophication effects in the hyporheic zone. A 4-week mesocosm-based 
field experiment in a eutrophic river was conducted using cage enclosures stocked 
or not with either nase or chub.

3. The top-down control of periphyton was expected to reduce biological clogging 
and thereby increase oxygen availability in the hyporheic zone. Accordingly, we 
hypothesised that in enclosures stocked with either fish the concentrations of dis-
solved oxygen in the hyporheic zone would be higher and the periphyton biomass 
would be lower than in enclosures without fish stocking.

4. Hyporheic oxygen concentrations were significantly higher in enclosures stocked 
with either nase or chub than in enclosures without fish stocking. However, pe-
riphyton ash-free dry mass was significantly reduced only in enclosures stocked 
with nase, not in those stocked with chub. Thus, the positive effects of nase and 
chub on hyporheic oxygen availability were caused by different mechanisms.

5. Our results demonstrate that nase and chub can reduce eutrophication effects in 
the hyporheic zone of running waters. Hence, protecting and enhancing stocks of 
herbivorous and omnivorous fish will contribute to restoring the hyporheic zone 
in efforts to preserve biodiversity in eutrophic rivers.
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1  | INTRODUC TION

The hyporheic zone is the connecting ecotone between river and 
groundwater ecosystems (Brunke, 1999). An intact hyporheic zone 
provides key ecological functions: it acts as a filter that mediates 
the exchange of water, nutrients, organic matter, and contami-
nants; it plays a crucial role in biogeochemical cycling and buffers 
against physical and chemical influences (Brunke & Gonser, 1997; 
Findlay, 1995; Stanford & Ward, 1988). It also serves as an import-
ant habitat and refuge for benthic invertebrates and the early de-
velopmental stages of gravel-spawning fish (Baxter & Hauer, 2000; 
Brunke & Gonser, 1997; Findlay, 1995; Williams & Hynes, 1974). Due 
to the importance of the hyporheic zone for ecosystem functioning 
and biodiversity, efforts aimed at stream restoration must also in-
clude restoration of the hyporheic zone (Boulton, 2007; Hester & 
Gooseff, 2010).

The ecological functionality of the hyporheic zone strongly 
depends on its permeability, with negative effects induced by the 
clogging of riverbed sediments (Brunke & Gonser, 1997). Regulated 
rivers within agricultural catchments, common in Central Europe, 
are especially prone to a reduced permeability of their hyporheic 
zones by two different clogging processes, physical and biological 
(Brunke, 1999; Brunke & Gonser, 1997; Hartwig & Borchardt, 2015; 
Ibisch, Seydell, & Borchardt, 2009). Physical clogging by anorganic 
fine sediments (e.g. as a result of erosion from agricultural fields) 
reduces the pore space and therefore the seepage rate, which in 
turn impairs the hydrological connectivity of surface water and 
groundwater (Brunke & Gonser, 1997; Hartwig & Borchardt, 2015). 
Biological clogging of the hyporheic zone is due to the excessive 
periphyton growth in nutrient-enriched streams and shallow riv-
ers that is induced by eutrophication (Hartwig & Borchardt, 2015; 
Ibisch et al., 2009). The resulting oxygen depletion (Hartwig & 
Borchardt, 2015; Ibisch et al., 2009) strongly reduces habitat quality 
for gravel-spawning fish and sensitive invertebrates, such as juvenile 
freshwater mussels (Geist & Auerswald, 2007; Hübner, Borchardt, & 
Fischer, 2009; Keckeis, Bauer-Nemeschkal, & Kamler, 1996; Malcolm, 
Youngson, & Soulsby, 2003). Extensive clogging also impairs inverte-
brate communities (Jones, Growns, Arnold, McCall, & Bowes, 2015) 
and decreases biodiversity (Descloux, Datry, & Marmonier, 2013).

Biological clogging is subject to temporal variation but its overall 
extent is related to the nutrient-driven accrual of periphyton bio-
mass (Ibisch et al., 2009). The accumulation of periphyton mats on 
substrates that leads to biological clogging is counteracted by the re-
moval of periphyton by floods or grazing. Grazing by fish and inver-
tebrates controls periphyton biomass (Feminella & Hawkins, 1995; 
Hillebrand, 2009; Holomuzki, Feminella, & Power, 2010), decreases 
periphyton biomass accumulation in nutrient-enriched rivers (Gerke 
et al., 2018; Peterson et al., 1993; Sturt, Jansen, & Harrison, 2011), 
and may alter periphyton community structure (e.g. Abe, Uchida, 
Nagumo, & Tanaka, 2007; Gelwick & Matthews, 1992; Lamberti & 
Resh, 1983; Pringle & Hamazaki, 1997). Clogging is also influenced 
by algal morphology, as the filamentous branches of green algae (e.g. 
the abundant Cladophora sp.) tend to trap sediments from the water 

(Berger, Henriksson, Kautsky, & Malm, 2003; Dodds, 1991), which 
may increase external clogging of the hyporheic zone.

In standing waters, the enhancement of zooplankton grazing by 
biomanipulation is a well-established technique to control eutro-
phication effects (Benndorf, 1990; Hansson et al., 1998; Shapiro & 
Wright, 1984). However, whether the active enhancement of grazing 
might be similarly used to control the effects of eutrophication in 
running waters is unknown. Given the potentially strong impact of 
the top-down control of periphyton by grazing in rivers, we expected 
that enhancing stocks of herbivorous and omnivorous fish would 
lead to increased indirect control of the eutrophication effects in 
rivers, especially those in which a drastic reduction in nutrient input 
and the restoration of flood dynamics are not feasible.

In North and South American streams, strong direct effects of 
herbivorous fish on periphyton have been observed both in small-
scale experiments (Flecker et al., 2002; Martin, Gido, Bello, Dodds, 
& Veach, 2016; Schneck, Schwarzbold, & Melo, 2013; Veach, Troia, 
Jumpponen, & Dodds, 2018; Wootton & Oemke, 1992) and on a 
mesohabitat scale (Gelwick & Matthews, 1992; Power, Dudley, & 
Cooper, 1989; Power, Matthews, & Stewart, 1985; Stewart, 1987). 
Grazing fish were also shown to reduce the filament lengths of fila-
mentous green algae (e.g. Bertrand & Gido, 2007; Martin et al., 2016; 
Murdock, Dodds, Gido, & Whiles, 2011). In Central European rivers, 
the large cypriniform common nase Chondrostoma nasus (Linnaeus, 
1758) (Leuciscidae: Leuciscinae) is the only obligate herbivorous fish 
species (Vater, 1997) and it is specialised for feeding on periphyton 
(Corse et al., 2010; Freyhof, 1995). Nase typically swim in shoals and 
scrape periphyton from coarse substrates. Despite large-scale popu-
lation declines, the common nase remains one of the most abundant 
fish species in many European rivers (Reckendorfer, Keckeis, Tiitu, 
Winkler, & Zornig, 2001) and its potential for reducing eutrophica-
tion effects in rivers may be accordingly significant.

Indirect top-down effects cascading through three trophic lev-
els, from zoobenthivorous fish to invertebrate grazers and then to 
periphyton, have been demonstrated in several small-scale exper-
iments (e.g. Dahl, 1998; Gerke et al., 2018; Pagnucco, Remmal, & 
Ricciardi, 2016) and under near-natural conditions in stream eco-
systems (Winkelmann et al., 2014). In two mesocosm experiments 
conducted in a Northern California river, predatory and omnivorous 
fish were shown to induce a four-level trophic cascade down to pe-
riphyton, by releasing grazing invertebrates from predation pressure 
(Power, 1990; Wootton & Power, 1993). In Central European rivers, 
one of the most widespread, common and at least partially pisciv-
orous fish species is the large omnivorous cypriniform European 
chub Squalius cephalus (Linnaeus, 1758) (Leuciscidae: Leuciscinae). 
While it partially feeds on periphyton, especially on filamen-
tous algae (Balestrieri, Prigioni, Remonti, Sgrosso, & Priore, 2006; 
Hellawell, 1971), and benthic invertebrates, with progressing age and 
size it increasingly preys on small zoobenthivorous fish such as min-
nows, Phoxinus phoxinus (Linnaeus, 1758) and bullheads, Cottus gobio 
(Linnaeus, 1758) (Hellawell, 1971; Mann, 1976). Thus, we predicted 
that, in addition to its potential direct top-down effects on periph-
yton by feeding on filamentous algae, large chub would indirectly 
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reduce periphyton biomass, and therefore eutrophication effects as 
well, via a four-level trophic cascade. Specifically, in response to a 
reduction in the local density of zoobenthivorous fish through either 
chub predation or displacement, benthic invertebrates would be re-
leased from predation pressure, thus increasing invertebrate grazing 
and reducing periphyton biomass.

To assess whether the top-down effects of herbivorous nase 
and omnivorous chub lead to a reduction in eutrophication effects 
in the hyporheic zone, we conducted a mesocosm-based field ex-
periment using cage enclosures in a eutrophic river. The top-down 
control of periphyton by nase and chub was expected to reduce bi-
ological clogging, ultimately resulting in an increased oxygen supply 
in the hyporheic zone. Accordingly, we hypothesised that enclosures 
stocked with either nase or chub would show (1) higher oxygen 
concentrations within the hyporheic zone and (2) a lower periph-
yton biomass than in enclosures without fish stocking. Along with 
a reduction of periphyton biomass, we expected grazing-induced 
changes in the structure of the periphyton community, especially 
regarding the proportion of green algae within the periphyton. The 
feeding activity of nase was expected to directly reduce periphyton 
biomass and that of omnivorous chub to directly and/or indirectly 
reduce periphyton biomass via the above-described four-level tro-
phic cascade.

2  | MATERIAL AND METHODS

2.1 | Experimental site

The experiment was conducted in the hyporhithral zone of the 
river Nister (Rhineland-Palatinate, Germany, 50°43′24 N, 7°44′24 
E), a small gravel-bed river with a catchment area of 246 km2. The 
average mean discharge is 6.3 m3/s in winter and 2.4 m3/s in sum-
mer (measured at Heimborn, ID 2724030100; data supplied by the 
State Office for Environment of Rhineland-Palatinate). The land use 
type in the catchment area is dominated by forestry, pasture and 
agriculture. At the experimental site, the Nister flows from east to 
west and the land use type is forest on its right bank (north) and 
pasture on its left bank (south). Therefore, the river is only partly 
shaded, on the right bank side. The river's width here averages 15 m. 
The river bed is relatively homogenous and mainly consists of cob-
bles (6.3–20 cm). Due to phosphate emissions in the catchment area 
from several minor municipal wastewater treatment plants and dif-
fuse emissions from local agriculture, the river is highly eutrophic, 
with the effects including oxygen oversaturation and an extremely 
high pH during the daytime, especially during the spring algal bloom 
(Gerke et al., 2018). The hyporheic zone in the river is impaired by 
clogging especially during summer, as indicated by high proportions 
of fine sediments in the substrate and low hyporheic oxygen concen-
trations (unpublished data, see Appendix S1 for details). Moreover, 
high differences of electrical conductivity and pH-values between 
surface water and hyporheic water suggest reduced subsurface–
surface exchange (Geist & Auerswald, 2007).

The benthic algal and cyanobacterial community in the river is 
dominated by adnate and loosely attached diatoms, but filamentous 
cyanobacteria (e.g. Homoeothrix sp.) and filamentous green algae 
(Ulothrix sp., Cladophora sp.) can become dominant during late spring 
and summer. The experiment described herein was conducted in 
early summer, after both the spring peak of the algal bloom and the 
breakdown of periphyton biomass. The invertebrate community is 
dominated by chironomid larvae and scraping grazers, such as the 
mayfly Ephemerella ignita (Poda, 1761) and the snail Ancylus fluviatilis 
(Müller, 1774).

The obligate herbivorous common nase dominates the commu-
nity of large fish, followed by the omnivorous European chub (es-
timated local biomass densities of fish >15 cm assessed in a 550 m 
river stretch directly upstream of the experimental site: common 
nase: 75 g/m2, European chub: 18 g/m2). On a mesohabitat scale, 
much higher natural fish densities can be expected in run sec-
tions, as they are the preferred feeding habitats of nase (Huber 
& Kirchhofer, 1998). In contrast, due to high predation risk in the 
river from cormorants, Phalacrocorax carbo sinensis (Linnaeus, 1758), 
shallow riffles are usually avoided by large fish. Among the small 
zoobenthivorous fish, bullhead, common minnow, and stone loach, 
Barbatula barbatula (Linnaeus, 1758), occur in high densities (Gerke 
et al., 2018).

2.2 | Experimental setup

The enclosure experiment was conducted using in situ fish cages 
(8 m2) and three treatment groups: (1) enclosures stocked with 
common nase; (2) enclosures stocked with European chub; and (3) 
control enclosures without fish stocking. The fish biomass density 
(mean ± standard deviation) was 308.6 ± 0.3 g/m2 for enclosures 
stocked with nase and 312.5 ± 1.7 g/m2 for enclosures stocked with 
chub, achieved by stocking each enclosure with six to nine nase in-
dividuals (total length of 28.0–34.5 cm, mean total length 30.8 cm) 
or four chub individuals (total length of 28.5–43.0 cm, mean total 
length 37.3 cm). The fish used for the experiment were caught in 
the vicinity of the cage locations by electrofishing (using EFGI 650, 
Bretschneider Spezialelektronik). Electrofishing was approved by 
the fisheries department of the local environmental agency, the SGD 
Nord (Rhineland-Palatinate, Germany).

Overall, 12 enclosures were arranged in four experimental blocks 
over a river section of c. 150 m, with one enclosure representing 
each treatment within each block. All enclosures were positioned in 
a run section with moderate water depth and current velocity (see 
Appendix S2 for details), representing a typical feeding habitat of 
adult nase and chub. Current velocity and water depth were similar 
among the three treatments (see Appendix S2). The three different 
treatment enclosures within a block were staggered, with the central 
enclosure shifted, so as to reduce mutual hydrological interference 
(Figure 1). Thus, control enclosures in the three blocks were posi-
tioned upstream of the fish enclosures and/or in a shifted position in 
the middle of the river, while the fish enclosures stocked with nase 
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or chub were positioned in an alternating sequence (see Figure 1). 
This arrangement was chosen to ensure that water flow through the 
control enclosures was optimal and never impaired by the enclosures 
stocked with fish. This excluded the possibility that any positive ef-
fects of the fish treatments were due to a higher water flow in the 
respective enclosure. The distance between experimental blocks 
was at least 20 m; the second and third experimental blocks were 
separated by c. 90 m because the water depth in the intermediate 
section was insufficient for large fish.

Each cage enclosure (length × width × height: 4 × 2 × 0.5 m) was 
constructed using 18 robust vertical PVC pipes (46 mm in diameter) 
as a core frame. Flexible horizontal PVC pipes (19 mm in diameter) 
were attached on all sides with a spacing of 20 mm. This spacing dis-
tance minimised the flow resistance of the enclosures and allowed 
small fish to pass through the cage interstices. The enclosure walls 
were regularly cleaned to remove deposited litter. The top openings 
of the enclosures were covered with removable fishing net (mesh 
size 25 mm) to prevent both the fish from jumping over the enclo-
sure walls and the entry of bird predators while the side walls of the 
enclosures were not additionally equipped with net. The bottom of 
the enclosures remained open and allowed the fish to access the nat-
ural river bed. The transition zone between the enclosure walls and 
the river bed was secured against digging fish with a strip of fishing 
net (mesh size 25 mm) that was attached to the lowest part of the 
enclosure walls and buried in the substratum along their edge. The 
enclosures were fixed within the river bed using iron bars. Overall, 
the enclosures proved sufficiently stable also at high water levels. 
Two weeks prior to the installation of the enclosures, a multilevel 
probe (manufactured by the central workshop of the University 
Kassel, Kassel, Germany) for the extraction of hyporheic water, fol-
lowing Lenk et al. (1999), was buried at the planned location of each 
enclosure. The enclosures were installed on 31 May 2017 and the 
experiment was started by stocking the enclosures with fish one 
week later, on 7 June 2017. The fish remained within the enclosures 
for 4 weeks, until 5 July 2017.

2.3 | Sampling

The concentration of hyporheic dissolved oxygen was sampled 
weekly beginning 1 week prior to the start of the experiment (di-
rectly before the installation of the enclosures on 31 May 2017) 
and continuing until the end of the experiment (5 July 2017). The 

multilevel probes (Lenk et al., 1999) allowed the collection of hypor-
heic water samples from three different depths (8, 13, and 23 cm) 
within the riverbed. Water samples from each depth horizon were 
obtained using a polypropylene syringe (B. Braun Melsungen AG, 
Melsungen, Germany) and their dissolved oxygen content was im-
mediately measured (WTW, Multi 3430 with FDO 925 probe, 
Wissenschaftlich Technische Werkstätten, Weilheim; Germany).

Periphyton was sampled according to the same weekly schedule 
(except on 7 June 2017) as the water samples. For periphyton sam-
pling, six stones were randomly chosen from the area of each enclo-
sure and their periphyton pooled to yield one sample per enclosure.
Periphyton was removed by carefully brushing the stone surface 
with a coarse brush and river water. The resulting periphyton sus-
pensions were transported in the dark to the laboratory.

Benthic invertebrates were sampled one week prior to the start 
of the experiment (directly before installation of the enclosures 
on 31 May 2017) and at the end of the experiment (5 July 2017). 
Sampling was performed using a Surber sampler (0.08 m2, mesh size 
500 µm) positioned at the upstream end of each enclosure. The in-
vertebrate samples were rinsed over a 500 µm-sieve and stored in 
70% ethanol.

2.4 | Laboratory analyses

Periphyton biomass was characterised based on the total periphy-
ton biomass (estimated as ash-free dry mass, in mg AFDM/cm2), as a 
measure of total organic matter, and the autotrophic periphyton bio-
mass (estimated as the chlorophyll a concentration in μg Chl a/cm2), 
as a measure of the mass of photosynthetically active algae. Both 
were quantified based on the total volume of the obtained periphy-
ton suspension and the sampled area of the stones. The surface area 
of the stones was estimated by carefully wrapping each stone in alu-
minium foil; overlapping areas were cut off, and the foil was then 
weighed. After their total volumes were determined, the periphyton 
suspensions were homogenised using a magnetic stirrer to ensure 
comparable aliquots.

Ash-free dry mass was quantified by transferring 10-ml aliquots 
to pre-weighed ceramic crucibles and then drying the samples at 
105°C for 24 hr. The dried samples were weighed, ashed in a muf-
fle furnace at 510°C for 5 hr and then reweighed. Chlorophyll a 
concentrations were measured by centrifuging triplicate 2-mL al-
iquots at 16,060 g for 3 min (Micro 200R; Hettich Zentrifugen). 

F I G U R E  1   Experimental setup 
showing the arrangement of the 
experimental blocks and of the treatments 
(enclosures stocked with nase or with 
chub and control enclosures without fish 
stocking) within each block.
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The supernatants were discarded, and the pellets stored at − 80°C. 
Chlorophyll a was extracted and then analysed spectrophotomet-
rically according to Mewes, Spielvogel, and Winkelmann (2017). In 
short, four 3-mm glass beads and 1.8 ml of 96% ethanol buffered 
with 1 g MgCO3/L was added to each pellet and the mixtures were 
then homogenised using a mixing mill (MM 400, Retsch Technology 
GmbH). Chl a was extracted for at least 3 hr at room temperature in 
the dark. Subsequently, the samples were centrifuged for 3 min at 
3,421 g (Micro 200R), and Chl a in the supernatant was measured 
spectrophotometrically (Specord 205; Analytic Jena, Jena, Germany) 
at 665 nm, correcting for turbidity at 750 nm. If the sample absor-
bance exceeded 1, the sample was appropriately diluted with buff-
ered ethanol to obtain a reading <1. The Chl a concentration was 
calculated per area as described in Mewes et al. (2017).

For later analyses of benthic algal and cyanobacterial commu-
nity composition, additional 2-mL aliquots were taken from the 
homogenised periphyton suspensions and stored at –80°C. The 
mean percentage of each taxonomic group (diatoms, green algae 
and cyanobacteria) in the suspension was estimated microscopically 
(400× magnification) and expressed relative to the total area cov-
ered by algae and cyanobacteria on the slide (set to 100% in each 
microscopic field of view). The mean percentage of each group was 
estimated from 50 fields of view per slide, and three slides were an-
alysed per sample.

All individuals from each benthic macroinvertebrate sample were 
sorted under a dissecting microscope, identified to the lowest prac-
ticable taxonomic level and counted. For each taxon in each sample, 
at least 50 undamaged individuals were measured to the nearest 
0.1 mm. If <50 individuals occurred for one taxon per sample, all in-
dividuals of the sample were measured. Invertebrate biomass was 
estimated by calculating the individual body mass (dry mass) using 
length–weight regressions (Baumgärtner & Rothhaupt, 2003; Benke, 
Huryn, Smock, & Wallace, 1999; Burgherr & Meyer, 1997; Gerke 
et al., 2018; Mährlein, Pätzig, Brauns, & Dolman, 2016; Meyer, 1989; 
Smock, 1980). To calculate the total biomass of invertebrate grazers 
in each sample, the biomass of each herbivorous and omnivorous 
species was weighted according to the average proportion of plant 
food in the diet of that species (Schmedje & Colling, 1996).

2.5 | Data analyses

To assess the effects of stocking the enclosures with nase or chub 
on the extent of biological clogging, we tested the effects of the 
fish treatments on hyporheic oxygen concentrations. The effect on 
periphyton biomass of stocking the enclosures with nase or chub 
was examined by measuring the effects of the fish treatments on 
AFDM and the Chl a concentration. Whether the fish treatments 
changed the proportion of green algae within periphyton was also 
determined. Potential effects of the fish treatments on invertebrate 
grazing were investigated by measuring the effects of the fish treat-
ments on overall invertebrate biomass and specifically on inverte-
brate grazer biomass. In all cases, with the exception of the effect 

of chub on benthic invertebrates, the effects of the fish treatments 
were tested against the control treatment without fish stocking. The 
effect of chub on invertebrate biomass (and specifically on grazer 
biomass) was tested against the other two treatments combined 
by applying orthogonal contrasts (contrast I: chub versus nase and 
control; contrast II: nase versus control). In general, all univariate 
statistical analyses were calculated by applying a generalised linear 
mixed model (GLMM) in which the treatment was a fixed factor and 
the experimental block a random factor, in order to account for dif-
ferences in the localities of the enclosures. In the analyses of the 
hyporheic oxygen concentration, the depth horizon was included as 
a fixed factor and the interaction treatment × depth was entered 
into the model. Parameters were estimated using the maximum 
likelihood method. Differences in invertebrate community compo-
sition were assessed using permutational multivariate analysis of 
variance (PERMANOVA) based on the Bray–Curtis dissimilarities 
calculated from the invertebrate biomass (fourth-root transformed). 
A PERMANOVA was performed with 999 permutations stratified 
within the experimental blocks. For a detailed assessment of the 
potential effect of chub treatment on invertebrate community com-
position, in addition to the full model, the orthogonal contrasts chub 
versus nase and control (contrast I) and nase versus control (contrast 
II) were analysed as well.

Prior to the tests of the hypotheses, we examined whether 
the habitat quality at the different enclosure sites differed so as 
to cause a bias in the results, by testing for potential differences 
between the enclosures in the initial values (before installation 
of the enclosures and fish stocking) of the dependent variables 
used for hypothesis testing according to the future fish stocking 
treatment. The same statistical methods as described above were 
applied, except that, rather than the control treatment, the over-
all model was used as the testing framework. There were no sig-
nificant effects of future treatment on the dependent variables 
prior to the experiment (Table B1 in Appendix S2). Consequently, 
the measurements obtained after termination of the experiment 
were used for hypothesis testing without a correction for the ini-
tial values.

Both the statistical analyses and graph plotting were performed 
using R version 3.6.1 (R Development Core Team, 2019). Generalised 
linear mixed models were applied using the lme function included 
in the R-package nmle (Pinheiro et al., 2018). PERMANOVA was 
performed using the adonis function from the R-package vegan 
(Oksanen et al., 2018).

3  | RESULTS

In accordance with our first hypothesis, in which higher oxygen con-
centrations were predicted for fish-stocked enclosures within the 
hyporheic zone, at the end of the experiment the hyporheic oxygen 
concentration was significantly higher in enclosures stocked with 
either nase (p = 0.001) or chub (p = 0.02) than in control enclosures 
without fish stocking (GLMM, n = 4; Figure 2). Prior to the experiment, 
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the hyporheic oxygen concentrations did not differ among the fu-
ture treatments (p = 0.59, see Table B1 in Appendix S2 for details; 
Figure 2). While the oxygen concentration decreased with increas-
ing hyporheic depth (p = 0.007), the effects of the fish treatments 
were independent of the depth horizon (overall treatment × depth: 
p = 0.73). Water samples from enclosures stocked with fish had a 
1.6 mg/L higher average oxygen concentration than samples taken 
from control enclosures. However, despite the positive effect of 
fish stocking, hyporheic oxygen concentrations generally decreased 
during the course of the experiment across all treatments (Table 1, 
Figure 2) and water temperature did not increase in a way that would 
explain this decrease (see Appendix S3 for details). Therefore, the 
process of biological clogging was not averted by the presence of 
large fish but only attenuated or decelerated, especially within the 
upper two depth horizons.

The second hypothesis, that top-down control of fish would re-
duce periphyton biomass, was only partly supported. Total periphy-
ton biomass at the end of the experiment was significantly lower in 
enclosures stocked with nase than in control enclosures (p = 0.048), 
with 30.5% less AFDM on average in the former (GLMM, n = 4; 
Figure 3a). By contrast, total periphyton biomass did not significantly 
differ between enclosures stocked with chub and control enclosures 
(p = 0.98, GLMM, n = 4; Figure 3a). Autotrophic periphyton biomass, 
measured as Chl a, was not reduced compared to the control enclo-
sures in either the nase- or the chub-stocked enclosures (p = 0.26 
and p = 0.49 respectively; GLMM, n = 4; Figure 3b). Despite the 
significant difference in total periphyton biomass at the end of the 

experiment, the top-down pressure of nase varied over time (see 
Appendix S3 for details).

The nase and chub treatments also differed in their effect on 
the general composition of the algal community (Table 2). The es-
timated proportion of green algae was significantly lower in enclo-
sures stocked with nase than in control enclosures (p = 0.02) while 
there was no significant effect of chub (p = 0.27; GLMM, n = 4). At 
the end of the experiment, green algae were largely dominated by 
Cladophora sp.

As predicted, indirect top-down effects of European chub on 
benthic macroinvertebrates were observed, including an overall 
effect of the treatments on invertebrate biomass (p = 0.048, n = 4, 
ANOVA of GLMM). At the end of the experiment, total invertebrate 
biomass in the enclosures stocked with chub differed significantly 
from that in the other two treatments (contrast I: p = 0.02, GLMM, 
Figure 4), whereas there was no difference in the total invertebrate 
biomass between the enclosures stocked with nase and the control 
enclosures (contrast II: p = 0.33, GLMM, Figure 4). The invertebrate 
biomass in the chub-stocked enclosures exceeded, on average, that 
in the other treatments, by 65.1%. However, there was no over-
all treatment effect on grazer biomass (p = 0.44, n = 4, ANOVA 
of GLMM) and grazer biomass did not differ between the enclo-
sures stocked with chub and the other two treatments (contrast 
I: p = 0.30; contrast II: p = 0.49; GLMM; Figure 4). This would also 
explain the lack of effects of the chub treatment on periphyton 
biomass.

Generally, benthic invertebrate community composition was 
affected by the fish treatments (PERMANOVA full model: p = 0.04, 
R2 = 0.17), although this effect was weaker than the effect of the 
experimental blocks, which accounted for the majority of the differ-
ences in the community composition (p = 0.004, R2 = 0.51). A com-
parison of the benthic invertebrate community composition in the 
enclosures stocked with chub versus the other treatments revealed 
statistically significant but weak effects of chub on the community 
composition (PERMANOVA contrast I: p = 0.02, R2 = 0.11). There 
were no significant effects of the enclosures stocked with nase com-
pared to the control enclosures (PERMANOVA contrast II: p = 0.41, 
R2 = 0.06).

F I G U R E  2   Mean oxygen concentration 
in the hyporheic zone (8, 13, and 23 cm 
depth) in enclosures stocked with nase 
or with chub and in control enclosures 
without fish stocking (n = 4). Left: before 
the installation of the enclosures (1 week 
prior to the start of the experiment), 
Right: at the end of the experiment. Error 
bars represent the standard deviations.
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TA B L E  1   Average difference in the oxygen concentration in the 
hyporheic zone at the end of the experiment compared to the initial 
values

Depth [cm]
Enclosures without fish 
stocking [mg/L O2]

Enclosures stocked with 
fish [mg/L O2]

8 −2.57 −0.72

13 −2.07 −0.40

23 −1.08 −0.84



     |  7HÜBNER Et al.

4  | DISCUSSION

Biological clogging of the hyporheic zone is a severe consequence of eu-
trophication in running waters, as it causes oxygen depletion (Hartwig 
& Borchardt, 2015; Ibisch et al., 2009), which in turn strongly reduces 
habitat quality in this important ecotone (Geist & Auerswald, 2007; 
Hübner et al., 2009; Malcolm et al., 2003). Our mesocosm experiment 
showed positive effects of both herbivorous and omnivorous fish on 
oxygen availability in the hyporheic zone of a eutrophic river, suggest-
ing a reduction of biological clogging. To our knowledge, this is the first 
study demonstrating that top-down effects by fish can reduce the im-
pact of eutrophication in the hyporheic zone of running waters.

During the experiment, hyporheic oxygen concentrations de-
creased across all treatments. A similar decrease regularly occurred 

in the late spring and early summer in nearby stretches of the river 
(own unpublished data 2015–2019). Clogging might have been more 
pronounced during the experiment due to the decelerated water flow 
caused by the enclosure cages and the subsequent increase in local 
sedimentation. Nevertheless, oxygen concentrations were less sig-
nificantly decreased in enclosures stocked with fish than in control 
enclosures without fish stocking. This indicates either a reduced or a 
considerably slowed clogging in the presence of these fish species.

The positive effects of herbivorous nase and omnivorous chub 
on hyporheic oxygen availability were caused by different mecha-
nisms. Initially, we expected that nase, as a specialised periphyton 
feeder (Corse et al., 2010; Freyhof, 1995), would directly reduce 
periphyton biomass accrual, thereby reducing biological clogging. 
Our results support this expectation, as judged by the significantly 
lower total periphyton biomass (AFDM) measured at the end of the 
experiment in enclosures stocked with nase. Several other studies 
have similarly shown that herbivorous fish can reduce periphyton, 
both on a small scale (e.g. Flecker et al., 2002; Martin et al., 2016; 
Schneck et al., 2013; Veach et al., 2018; Wootton & Oemke, 1992) 
and on a mesohabitat scale (Gelwick & Matthews, 1992; Power 
et al., 1985,1989; Stewart, 1987). However, compared to the mean 
hyporheic oxygen concentration, which was more than twice as high 
in enclosures stocked with nase than in those without fish stock-
ing, the reduction in the mean AFDM was rather small. Thus, even a 
small reduction of periphyton biomass is sufficient to cause a large 
increase in hyporheic oxygen availability. Because hyporheic oxygen 
availability is mainly controlled by water transport and heterotro-
phic respiration rates (Brunke & Gonser, 1997), it might be affected 
by two different processes associated with biological clogging: (1) 
the reduced permeability of the hyporheic zone as a consequence of 
both external clogging by benthic algae (Battin & Sengschmitt, 1999; 
Ibisch et al., 2009) and internal clogging by infiltrated algal cells (Kloep 
& Röske, 2004); and (2) an increase in biological oxygen demand in 
the hyporheic zone due to the enhanced decomposition of decaying 
algae (Rode, Hartwig, Wagenschein, Kebede, & Borchardt, 2015). In 
this respect, the relatively large effect of herbivorous nase on hy-
porheic oxygen availability may have reflected the reduced input of 
organic matter into the hyporheic zone by fish grazing, resulting in 
a decreased biological oxygen demand but only a slight reduction in 
the extent of external clogging.

F I G U R E  3   (a) Mean ash-free dry mass 
(AFDM) and (b) mean chlorophyll a (Chla) 
concentration in enclosures stocked 
with nase or with chub and in control 
enclosures without fish stocking (n = 4) 
at the end of the experiment. Error bars 
represent the standard deviations.
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TA B L E  2   Estimated proportion (mean ± standard deviation) of 
higher periphyton taxa contributing to the algal and cyanobacterial 
communities in the three treatments (n = 4) at the end of the 
experiment

 Diatoms [%] Green algae [%] Cyanobacteria [%]

Nase 64 ± 9 17 ± 6 20 ± 10

Chub 63 ± 8 30 ± 7 7 ± 7

Control 57 ± 5 34 ± 9 9 ± 11

F I G U R E  4   Mean total invertebrate biomass and mean biomass 
of invertebrate grazers in enclosures stocked with nase or with 
chub and in control enclosures without fish stocking (n = 4) at 
the end of the experiment. Error bars represent the standard 
deviations.
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In contrast to total periphyton biomass, autotrophic periphyton 
biomass (measured as Chl a) was not lower in the enclosures stocked 
with nase. One explanation for this result is the masking of graz-
ing effects on Chl a by compensatory growth due to high rates of 
algal productivity. The autotrophic growth rate at the experimental 
site was presumably high, due to high nutrient and light availabil-
ity (Lamberti, Gregory, Ashkenas, Steinman, & McIntire, 1989; Sturt 
et al., 2011). Moreover, fish grazing might even have stimulated 
algal growth. Benthic grazing reduces competition for nutrients 
and light by removing the upper layers of algae, thereby offering 
optimal growth conditions for new algae (Lamberti & Resh, 1983; 
McCormick & Stevenson, 1989,1991).

In this respect, as an indicator of periphyton biomass accumula-
tion over time, AFDM may be more appropriate than Chl a because 
it includes live, dead, and senescent algae (Lamberti et al., 1989). 
Support for a stimulation of algal growth by fish grazing comes 
from our finding of a significantly lower proportion of green algae, 
especially filamentous Cladophora, in the nase-stocked enclosures, 
which indicated grazing-induced changes in periphyton community 
structure. The lower proportion of filamentous green algae in the 
nase-stocked enclosures may have additionally contributed to re-
ducing the extent of clogging, given the potential of the enhanced 
trapping of sediments in the filamentous branches of Cladophora 
(Berger et al., 2003; Dodds, 1991) to increase external clogging of 
the hyporheic zone.

Among the possible mechanisms underlying the increased ox-
ygen availability in the chub-stocked enclosures was the ability of 
these fish to reduce biological clogging by exerting indirect top-
down effects on periphyton. We expected that chub negatively af-
fect the densities of small zoobenthivorous fish either by predation 
(Hellawell, 1971; Mann, 1976) or by displacement (Magurran, 1989). 
The subsequent release of benthic invertebrates was expected to 
promote invertebrate biomass and, in turn, grazer biomass, eventu-
ally leading to increased grazing. The results showed that the pres-
ence of chub positively affected total benthic invertebrate biomass, 
thus indicating a negative effect of the fish on zoobenthivorous fish 
densities in the enclosures. However, the biomass of invertebrate 
grazers was not promoted by the presence of chub, which would 
explain why periphyton biomass in enclosures stocked with chub 
was not reduced. Hence, the positive effects of chub on benthic 
invertebrate biomass did not cascade down to periphyton. This re-
sult was surprising, because the results of a small-scale experiment 
conducted close to the experimental site indicated the strong im-
pact of the cascading effects of zoobenthivorous fish on periphy-
ton biomass in the Nister (Gerke et al., 2018). Moreover, four-level 
trophic cascades induced by predatory and omnivorous fish were 
found in two mesocosm experiments in a Northern California river 
(Power, 1990; Wootton & Power, 1993). The absence of a similar cas-
cade down to periphyton in our experiment can be explained by the 
fact that chub is an opportunistic feeder (Balestrieri et al., 2006) that 
also feeds on large invertebrate grazers such as mayfly larvae. These 
are generally highly susceptible to predation while grazing on the 
stone surface (Kohler & McPeek, 1989).

The observed positive effect of chub on the oxygen availability 
in the hyporheic zone can be best explained by the enhancement 
of bioturbation. Benthic foraging by chub might have disturbed the 
river bed, thereby increasing permeability in the upper layer of the 
hyporheic zone. This scenario seems likely because chub and other 
benthic-feeding fish can act as zoogeomorphic agents, by increasing 
the mobility of sediments and thereby causing substrate coarsening 
(Pledger, Rice, & Millett, 2016,2017; Statzner, Sagnes, Champagne, 
& Viboud, 2003).

On larger spatial scales, the top-down effects of herbivorous 
nase that lead to an increased oxygen availability in the hypor-
heic zone might be more important than those of chub, due to the 
shoaling behaviour of nase. Specifically, adult nase typically form 
large single-species shoals of a dozen up to several hundred indi-
viduals that move actively within defined home ranges (Huber & 
Kirchhofer, 1998; Lusk, 1967). Within the feeding habitats of their 
home range, the densities and consequently the top-down effects 
of nase are presumably similar to those observed in our mesocosm 
experiment. The effects of chub might be less intense at larger 
scales because biomass in the enclosures exceeded those found in 
the river. Nonetheless, natural assemblages of river fish accommo-
date several species and rheophilic cypriniform fish such as nase and 
chub are important species in the hyporhithral and epipotamal zones 
of European rivers (Aarts & Nienhuis, 2003). As in our experiment 
both nase and chub positively affected hyporheic oxygen availabil-
ity, under natural conditions the sympatric occurrence of the two 
species is likely to have synergistic effects. Hence, protecting and 
enhancing the stocks of both herbivorous and omnivorous fish may 
contribute to a reduction of eutrophication effects and a restoration 
of the hyporheic zone in running waters.

Although the effects of nase and chub on hyporheic oxygen 
concentration were not strong enough to impede or even reverse 
clogging, these fish may play an important role in the river's local 
biodiversity. In Central European rivers, the period during which 
fish eggs and larvae of several fish species develop within the hy-
porheic zone (intragravel period) coincides with the spring algal 
peak. Among these species are the salmonid grayling, Thymallus 
thymallus (Linnaeus, 1758) and the cypriniforms common barbel, 
Barbus barbus (Linnaeus, 1758), and nase (Britton & Pegg, 2011; 
Hübner et al., 2009; Kamler, Keckeis, & Bauer-Nemeschkal, 1998). 
A low oxygen supply due to the reduced permeability of spawn-
ing gravels has been identified as a critical factor compromising 
the survival of salmonid eggs and larvae (e.g. Malcolm et al., 2003; 
Soulsby, Youngson, Moir, & Malcolm, 2001; Suttle, Power, Levine, 
& McNeely, 2004), and the survival of grayling eggs and larvae 
is negatively affected by eutrophication (Hübner et al., 2009). 
Lithophilic cypriniforms such as nase also require a permeable 
and well-oxygenated hyporheic zone for successful develop-
ment (Duerregger et al., 2018; Keckeis et al., 1996; Nagel, Pander, 
Mueller, & Geist, 2019). High densities of large herbivorous and 
omnivorous fish are therefore likely to substantially improve hab-
itat quality in the short intra-gravel period of spring spawning fish 
such as grayling, barbel, and nase.
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