## Optimization I: Linear and Network Optimization

## 11th Handout



## Summer Term 2018

Dr. David Willems

## Algorithm 1: Algorithm of Edmonds and Karp

EDMONDS-KARP-MAXFLOW (G, u, s, t)

**Input** :A simple directed graph G = (V, R), a non-negative capacity function  $u: R \to \mathbb{R}$ , two nodes  $s, t \in V$ .

**Output:** A maximum (s, t)-flow f.

- 1 Set f(r) := 0 for all  $r \in R$
- **2** while there exists a path from s to t in  $G_f$  do
- Choose such a shortest path *P*
- 4 Set  $\Delta := \min\{u_f(\sigma r) : \sigma r \in P\}$  // residual capacity of path P
- 5 Augment f along P by  $\Delta$  units
- 6 Update  $G_f$