Optimization I: Linear and Network Optimization

12th Handout

Summer Term 2018

Dr. David Willems

Algorithm 1: Algorithm of Klein to compute min cost flows

MinCostFlow-Klein(G, I, u, b, c)

Input : A simple directed graph $G = (V, R, \alpha, \omega)$ with capacity functions $0 \le I(r) \le u(r)$ for all $r \in R$, desired excess

values $b: V \to \mathbb{R}$ and flow costs $c: R \to \mathbb{R}_+$.

Output: A minimum cost *b*-flow f. If I, u and c are integral, so is f.

- 1 Compute a feasible b-flow f // Can be done by computing a maximum flow
- 2 while the residual network G_f contains a negative cycle C do
- Let $\Delta := \min_{\sigma r \in C} c(\sigma r)$ be the minimal residual capacity along C
- 4 Augment f along C by Δ // Eliminate the negative cycle C
- 5 return f