

Mehrdimensionale Differentiation und Integration 1. Klausur 20.02.2017

	Name:										
	Vornam	e:									
	Matrike	l-Nr.	:								
	$\mathbf{Studien}_{\mathbf{S}}$	gang:									
daf als Tei Sch ab.	ür vorgeseh zwei Seiten len Sie dies .mierblätte:	nenen E sein, l s bitte r, die S ufgaber	Blatt (V können bei der ie nach n sind	forderse Sie sie Abgab Bedarf 10 Pun	eite und auf eine e der a Inach B	l bei Be em Zus ufsicht Beginn o	edarf R atzblat sführen der Kla	ückseite t (mit N iden Pei usur erl). Sollte Ihro Namen verse rson mit. nalten, gebe	ufgabe auf de Lösung lär hen) fortsetz n Sie bitte n eibgeräten,	nger zen. icht
Das	s Ergebnis	der Kla	ausur v	vird Ihr	nen per	Email	/KLIPS	S mitget	teilt.		
	Aufgabe	1	2	3	4	5	6	7	Summe		
	Punkte										
	bestand	en:					N	ote:			

Aufgabe 1:

Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := \begin{cases} \frac{x^3y + x^5}{x^4 + y^4} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

- a) Berechnen Sie die partiellen Ableitungen von f in (0,0).
- b) Berechnen Sie die partiellen Ableitungen von f in allen $(x,y) \neq (0,0)$.
- c) Untersuchen Sie, ob f in (0,0) stetig ist.

Aufgabe 2:

a) Bestimmen Sie die Funktionalmatrix von $h=f\circ g$ im Punkte (1,2) für

$$g: \mathbb{R}^2 \setminus \{(0,y) \mid y \in \mathbb{R}\} \to \mathbb{R}^3, g(x,y) := (\frac{1}{x}, 2 + y^2, x^2 - 3y)$$

und

$$f: \mathbb{R}^3 \to \mathbb{R}^3, f(u, v, w) := (u - v, uvw^2, 3v + w)$$
.

b) Untersuchen Sie anhand der Definition, ob

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := \left\{ \begin{array}{ll} \frac{x^5}{x^4 + y^4} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{array} \right.$$

in (0,0) total differenzierbar ist.

Aufgabe 3:

a) Bestimmen Sie für

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := x^2 e^y + 2y$$

- das Taylorpolynom zweiten Grades um den Entwicklungspunkt $(x_0, y_0) = (2, 0)$. b) Berechnen Sie für f aus a) die Richtungsableitung in (1, 3) in Richtung $v = (\frac{5}{13}, -\frac{12}{13})$.
- c) Untersuchen Sie, in welchen Punkten

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) := (x^2 + y^4, x^3 y)$$

lokal injektiv ist.

Aufgabe 4:

a) Bestimmen Sie alle Extrempunkte von

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := x^2 + xy + y^2 + x - y + 1$$

und untersuchen Sie, ob ein lokales Maximum oder ein lokales Minimum vorliegt.

b) Untersuchen Sie mit der Methode der Lagrange-Multiplikatoren, wo

$$f:]0, \infty[\times]0, \infty[\times \to \mathbb{R}, f(x, y): = \frac{1}{x} + \frac{4}{y}$$

unter der Nebenbedingung

$$g(x,y) := \frac{1}{x^2} + \frac{1}{y^2} - 4 = 0$$

ein Extremum besitzen kann.

Aufgabe 5:

a) Verifizieren Sie den Hauptsatz für Kurvenintegrale, indem Sie für

$$F: \mathbb{R}^2 \to \mathbb{R}, F(x,y) := x(1+y^2)$$

das Kurvenintegral $\int_C < \nabla F, dx >$ für die $(x_0, y_0) := (0, 1)$ und $(x_1, y_1) := (2, 0)$ verbindenden Kurven C_1, C_2 mit den Parameterdarstellungen $\sigma_i, i = 1, 2$ berechnen mit (i) $\sigma_1 : [0, 2] \to \mathbb{R}^2, \sigma_1(t) := (t, 1 - \frac{1}{2}t)$ (ii) $\sigma_2 : [0, 2] \to \mathbb{R}^2, \sigma_2(t) := \begin{cases} (t, 1 - t) & \text{für } 0 \le t < 1 \\ (t, 0) & \text{für } 1 \le t \le 2 \end{cases}$ b) Untersuchen Sie, ob k ein konservatives Kraftfeld ist für

(i)
$$\sigma_1: [0,2] \to \mathbb{R}^2, \sigma_1(t) := (t, 1 - \frac{1}{2}t)$$

(ii)
$$\sigma_2: [0,2] \to \mathbb{R}^2, \sigma_2(t) := \begin{cases} (t,1-t) & \text{für } 0 \le t < 1 \\ (t,0) & \text{für } 1 < t < 2 \end{cases}$$

- - (i) $k: \mathbb{R}^2 \to \mathbb{R}^2, k(x,y) := (2xy^3 + 2, 3x^2y^2 e^y),$ (ii) $k: \mathbb{R}^2 \to \mathbb{R}^2, k(x,y) := (\frac{2xy}{1+\sqrt{1+x^2}} 12xy^2, y \ln(1+x^2) 4yx^3)$ und (iii) geben Sie eine Potentialfunktion für k an, sofern k ein konservatives Kraftfeld ist.

Aufgabe 6:

Bestimmen Sie die Länge L

a) der Kurve C mit der Parameterdarstellug $\sigma:[0,1]\to\mathbb{R}^2, \sigma(t):=(t,\cosh t),$ b) der Kurve C mit der Parameterdarstellug $\sigma:[1,2]\to\mathbb{R}^2, \sigma(t):=(\frac{1}{\sqrt{t}},t^2).$ Leiten Sie L in b) nur so weit her, bis Sie ein Integral erhalten, welches nicht mehr elementar integrierbar ist.

c) Berechnen Sie die Kurvenintegrale des Skalarfeldes f längs der Kurve C für

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := (x + \sqrt{y})$$

und C des Teiles der Parabel $y=x^2$, das von der Geraden y=2x abgeschnitten wird.

Aufgabe 7:

- a) Berechnen Sie
- (i) $\int_G (xy+3x^2) \ d(x,y)$ für $G:=[-1,1]\times[1,2]$. (ii) $\int_G 2x \sin y \ d(x,y)$ für $G:=\{(x,y)\in\mathbb{R}^2\mid 0\le x\le \sqrt{y}, 0\le y\le \frac{\pi}{2}\}$. b) Berechnen Sie mit Hilfe der Transformationsformel

$$\int_G xy^2 d(x,y)$$

für $G:=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 2, 0\leq y\leq x\}$ und Polarkoordinaten

$$x = r \cos \phi$$
,

$$y = r \sin \phi$$
.