

Mehrdimensionale Differentiation und Integration 2. Klausur 03.04.2017

	Name:										
	Vornam	e:									
	$\mathbf{Matrike}$	l-Nr.	:								
	${f Studien}_{f S}$	gang	:								
daf als Tei Sch ab.	ür vorgeseh zwei Seiten len Sie dies .mierblätte:	enen E sein, l s bitte r, die S	Blatt (V können bei der ie nach n sind	Torderse Sie sie Abgab Bedarf 10 Pun	eite und auf eine e der a Inach B	bei Be em Zus ufsicht Beginn o	edarf R atzblat sführen der Kla	ückseite t (mit N iden Pe usur erl	n Sie jede A e). Sollte Ihr Namen verse rson mit. nalten, gebe ausser Schr	e Lösung l hen) forts n Sie bitte	änger etzen. nicht
Da	s Ergebnis	der Kl	ausur w	vird Ihr	nen per	Email	/KLIP	S mitge	teilt.		
	Aufgabe	1	2	3	4	5	6	7	Summe		
	Punkte										
bestanden:					Note:						

Aufgabe 1:

 Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := \begin{cases} \frac{x^3y}{x^4+y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

- a) Berechnen Sie die partiellen Ableitungen von f in (0,0).
- b) Berechnen Sie die partiellen Ableitungen von f in allen $(x, y) \neq (0, 0)$.
- c) Zeigen Sie, dass f in (0,0) stetig, jedoch in (0,0) nicht total differenzierbar ist.

Aufgabe 2:

(i) Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ das Vektorfeld

$$f(x,y) = (xy - e^x, x\sin(xy))$$

und $g: \mathbb{R}^2 \to \mathbb{R}$ die Funktion

$$g(u,v) = uv - 1.$$

- a) Berechnen Sie die zusammengesetzte Funktion $F = g \circ f$.
- b) Berechnen Sie die partiellen Ableitungen von F direkt mit Hilfe des in Teilaufgabe a) gefundenen expliziten Terms.
- c) Berechnen Sie den Gradienten ∇F von F mit Hilfe der Kettenregel

$$\nabla F(x,y) = \nabla g(f(x,y)) \cdot J_f(x,y) .$$

(ii) In \mathbb{R}^3 ist für $a=(a_1,a_2,a_3),\,b=(b_1,b_2,b_3)$ das Vektorprodukt

$$a \times b := (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

definiert. Zeigen Sie:

Sind (a_k) und (b_k) konvergente Folgen in \mathbb{R}^3 mit $\lim_{k\to+\infty} a_k = \alpha$ und $\lim_{k\to+\infty} b_k = \beta$, so gilt

$$\lim_{k \to +\infty} (a_k \times b_k) = \alpha \times \beta .$$

Aufgabe 3:

a) Bestimmen Sie für

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := x \cdot \sin y - y \cdot \sin x$$

das Taylorpolynom zweiten Grades um den Entwicklungspunkt $(x_0, y_0) = (0, 0)$. b) Untersuchen Sie, in welchen Punkten

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) := (x + \frac{1}{2}y^2, y + \frac{1}{2}x^2)$$

lokal injektiv ist.

Aufgabe 4:

a) Bestimmen Sie alle Extrempunkte von

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := x^3 + y^3 - 3x - 12y + 20$$

und untersuchen Sie, ob ein lokales Maximum oder ein lokales Minimum vorliegt.

b) Das Risiko bei einem Portfolio aus drei Aktien ist gegeben durch

$$R(\alpha_1,\alpha_2,\alpha_3) = \frac{1}{2}\alpha_1^2 + \alpha_2^2 + \frac{1}{2}\alpha_3^2 ,$$

wobei

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$

und $\alpha_j \in [0,1]$ die Anteile sind, die in der j-ten Aktie veranlagt wurden. Bei welchen Anteilen ergibt sich das minimale Risiko?

Hinweis: Sie können b) mit der Methode der Lagrange - Multiplikatoren lösen oder die Nebenbedingung $\alpha_1 + \alpha_2 + \alpha_3 = 1$ benutzen, um eine Variable (z. B. α_3) zu eliminieren.

Aufgabe 5:

a) Verifizieren Sie den Hauptsatz für Kurvenintegrale, indem Sie für

$$F: \mathbb{R}^2 \to \mathbb{R}, F(x,y) := -\frac{y}{1+x^2}$$

das Kurvenintegral $\int_C < \nabla F, dx >$ für die $(x_0, y_0) := (0, -1)$ und $(x_1, y_1) := (1, -4)$ verbindenden Kurven C_1, C_2 mit den Parameterdarstellungen $\sigma_i, i = 1, 2$ berechnen mit

(i)
$$\sigma_1: [0,1] \to \mathbb{R}^2, \sigma_1(t) := (t, -1 - 3t)$$

(ii)
$$\sigma_2: [0,1] \to \mathbb{R}^2, \sigma_2(t) := \begin{cases} (0, -6t - 1) & \text{für } 0 \le t \le \frac{1}{2} \\ (2t - 1, -4) & \text{für } \frac{1}{2} \le t \le 1 \end{cases}$$

- b) Untersuchen Sie, ob k ein konservatives Kraftfeld ist für
 - (i) $k : \mathbb{R}^2 \to \mathbb{R}^2, k(x, y) := (xy^2, xy),$
 - (ii) $k: \mathbb{R}^2 \to \mathbb{R}^2, k(x,y) := (ye^x, e^x \cos y)$ und
 - (iii) geben Sie eine Potentialfunktion für k an, sofern k ein konservatives Kraftfeld ist.

Aufgabe 6:

Bestimmen Sie die Bogenlänge L

a) der Kurve C (Asteroide) mit der Parameterdarstellug

$$\sigma: [0, a] \to \mathbb{R}^2, \sigma(t) := (t, (a^{\frac{2}{3}} - x^{\frac{2}{3}})^{\frac{3}{2}})$$
,

wobei a > 0 eine vorgegebene Konstante sei.

b) Berechnen Sie die Masse $\int_C \varrho \, ds$ einer Schraubenfeder mit der Massendichte

$$\varrho(x,y,z) := xyz$$

und C der Schraubenfeder mit der Parametrisierung

$$\sigma: [0,2] \to \mathbb{R}^3, \sigma(t) := (R\cos t, R\sin t, ht).$$

Dabei seien h, R > 0 vorgebene Konstanten.

Hinweis: Beachten Sie die trigonometrische Formel $\sin(2t) = 2\cos t \cdot \sin t$.

Aufgabe 7:

- a) Berechnen Sie
 - (i) $\int_G \, e^{x+y} \; d(x,y)$ für $G := [0,\frac{\pi}{2}] \times [0,\pi].$
 - (ii) $\int_G x^2 e^{xy} d(x,y)$ für $G := \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\}.$
- b) Berechnen Sie mit Hilfe der Transformationsformel

$$\int_G x^2 + y^2 d(x, y)$$

für
$$G:=B_R(0,0):=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq R^2\}$$
 und Polarkoordinaten

$$x = r \cos \phi,$$

$$y = r \sin \phi$$
.