
Optimization I

Linear Optimization

Dr. David Willems

Mathematical Institute
University of Koblenz-Landau
Campus Koblenz

1

Notes



Outline

1. Organization

2. Introduction and Fundamental Terms

3. Basic Solution, Optimality Test and Basis Exchange

4. The Simplex Algorithm

5. Fundamental Theorem of Linear Programming

6. 2-Phase-Method

7. Duality

2

Notes



Contents

1. Organization

3

Notes



Organization

Contact
Dr. David Willems

I E-Mail: davidwillems@uni-koblenz.de

I O�ice: G 329

I O�ice hour: If my door is open

Florian Gensheimer

I E-Mail: gensheimer@uni-koblenz.de

I O�ice: C 204

I O�ice hour: Ask him!
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Organization

Dates
Lecture:

I Monday, from 08:00 – 10:00 in G 409

I Thursday, from 08:00 – 10:00 in G 209

Tutorials:

I Monday, from 16:00 – 18:00 in K 107

I Friday, from 12:00 – 14:00 in E 414

Material
Lecture material (e. g. these slides, exercise sheets, . . . ) will be available
under

h�p://uni-ko-ld.de/n5
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Organization

Exam
There will be two exams within the next six months:

I Monday, 16.07.2018 in M 001 from 10:00 – 12:00

I At the beginning of October, date and room are not fixed yet.

You must register in KLIPS in order to participate at the exam.
Registration should already be possible from right now.

Register early!
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Introduction

Example 2.1
 Handout.
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Definition 2.2 (Linear Program in general form)

min c1 x1 + . . . + cn xn

s. t. ai1 x1 + . . . + ain xn = bi ∀i = 1, . . . , p
ai1 x1 + . . . + ain xn ≤ bi ∀i = p + 1, . . . , q
ai1 x1 + . . . + ain xn ≥ bi ∀i = q + 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , r
xj ≶ 0 ∀j = r + 1, . . . , n

(G-LP)

I decision variable(s): x = (x1, . . . , xn)T

I feasible region:

P :=


x ∈ Rn :

n∑
j=1

aij xj = bi ∀i = 1, . . . , p

n∑
j=1

aij xj ≤ bi ∀i = p + 1, . . . , q

n∑
j=1

aij xj ≥ bi ∀i = q + 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , r
xj ≶ 0 ∀j = r + 1, . . . , n


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Definition 2.3 (Linear Program in general form)

min c1 x1 + . . . + cn xn

s. t. ai1 x1 + . . . + ain xn = bi ∀i = 1, . . . , p
ai1 x1 + . . . + ain xn ≤ bi ∀i = p + 1, . . . , q
ai1 x1 + . . . + ain xn ≥ bi ∀i = q + 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , r
xj ≶ 0 ∀j = r + 1, . . . , n

(G-LP)

I feasible solution: x ∈ P

I objective function value of x : z(x) := c>x

I optimal solution x∗: feasible solution with the best objective function
value

I optimal objective function value: objective function value of an optimal
solution (if it exists) z∗ = z(x∗) = c>x∗
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Linear programs

Example 2.4

→ board

Observation 2.5

1. The feasible region is a polyhedron (or polytope).

2. There is an optimal solution in a vertex of the polyhedron.
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Notation 2.6
Denote by Ai· the i-th row of the matrix A ∈ Rm×n and by A·j its j-th
column.

A =
(

A·1, . . . ,A·j, . . . ,A·n
)

=



A1·
...

Ai·
...

Am·


=



a11 . . . a1j . . . a1n
...

. . .
...

...
ai1 . . . aij . . . ain

...
...

. . .
...

am1 . . . amj . . . amn


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Graphical Method

Algorithm 2.7 (Graphical solution method for LPs with two
variables)

Input: LP of the form: max{c>x : A x ≤ b; xj ≥ 0, j = 1, 2}

1. Draw the set of feasible solutions P as intersection of the half spaces
Ai·x ≤ bi, i = 1, . . . ,m and xj ≥ 0, j = 1, 2

2. Choose some z ∈ R and draw the line c>x = z

3. Find the uniquely determined line c>x = z∗ parallel to c>x = z that
satisfies:

3.1 ∃x∗ ∈ P : c>x∗ = z∗

3.2 z∗ is the maximum with this property

Output: Every x∗ ∈ P with c>x∗ = z∗ is an optimal solution of the
problem and z∗ is the optimal objective function value.
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Example 2.8 (2.4, cont.)

14

Notes



Infeasibility and Unboundedness

Definition 2.9
An LP is called

I infeasible if P = ∅
I unbounded if the objective function value is unbounded, i. e., there are

feasible solutions with arbitrarily good (large/small) objective function
values

15

Notes



Standard Form

Definition 2.10 (LP in standard form)

min c>x

s. t. A x = b (LP)

x ≥ 0

where c = (c1, . . . , cn) ∈ Rn is the cost vector and A ∈ Rm×n,m ≤ n, with
full rank m (otherwise: remove redundant rows).
P = {x ∈ Rn : A x = b, x ≥ 0} is the feasible region or feasible set.
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Theorem 2.11
Every LP in general form (G-LP) can be transformed into an equivalent LP in
standard form (LP).

Proof.
→ board
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Linear programs

Example 2.12 (2.4, cont.)
→ board

Idea of an Optimization Algorithm for LP:

I move iteratively from one extreme point (vertex) of the feasible region
(polyhedron) to another one

I improve the objective function value in every step

I stop if no further improvement is possible
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Contents

3. Basic Solution, Optimality Test and Basis Exchange

3.1 Basic representation

3.2 Optimality condition

3.3 Basis exchange
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Definition 3.1 (Basis, Basic Solution)
Given a LP in standard form

min c>x

s.t. A x = b

x ≥ 0

A basis of A is a set B = {A·B(1), . . . ,A·B(m)} of m linearly independent
columns of A, where B = {B(1), . . . ,B(m)} ⊆ {1, . . . , n} is a subset of the
column indices.
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Definition 3.1 (Basis, Basic Solution (cont.))
With respect to a fixed basis B we define

I Basic variable xj with j ∈ B

I Vector of basic variables: xB = (xB(1), . . . , xB(m))
>

I Let N := {1, . . . , n} \ B = {N(1), . . . ,N(n−m)}
I Non-basic variable: xj with j ∈ N

I Vector of non-basic variables: xN = (xN(1), . . . , xN(n−m))
>

I AB := (A·B(1), . . . ,A·B(m)) ∈ Rm×m nonsingular submatrix of A
AN := (A·N(1), . . . ,A·N(n−m)) ∈ Rm×(n−m)

I cB := (cB(1), . . . , cB(m))
> ∈ Rm

cN := (cN(1), . . . , cN(n−m))
> ∈ Rn−m
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Basic representation

A x = b

⇐⇒ x1 A·1 + . . .+ xn A·n = b

⇐⇒
(
xB(1)A·B(1) + · · ·+ xB(m)A·B(m)

)
+
(
xN(1)A·N(1) + · · ·+ xN(n−m)A·N(n−m)

)
= b

⇐⇒ AB xB + AN xN = b

⇐⇒ AB xB = b − AN xN

Since AB is invertible, we can solve for xB.

⇐⇒ xB = A−1
B b − A−1

B AN xN

Basic representation of x w. r. t. B

−→ Every choice of xN uniquely determines xB.
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Basic solution

Definition 3.2

I x ∈ Rn is called basic solution w. r. t. B, if

x =
(

xB
xN

)
: xN = 0, xB = A−1

B b.

I A basic feasible solution (BFS) is a basic solution with xB ≥ 0.

Example 3.3 (Ex. 2.4)
→ board
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Basic solution

Remark 3.4
Any feasible region of an LP is a polyhedral set, i.e., it is the intersection of
a finite number of halfspaces:{

A x = b
x ≥ 0

}
⇐⇒ (A x ≤ b ∧ A x ≥ 0 ∧ x ≥ 0)

Definition 3.5
An extreme point (corner point, vertex) of a polyhedral set P ⊆ Rn is a
point that lies on n linearly independent defining hyperplanes of P .
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Basic solution

Theorem 3.6
Every BFS of (LP) (in standard form) corresponds to an extreme point of the
(polyhedral) feasible set P = {x ∈ Rn : A x = b; x ≥ 0} and vice versa.

Proof.
→ board

Remark 3.7
There may exist more than one basis corresponding to the same BFS or
extreme point.

Definition 3.8
A BFS is called degenerate if more than n−m variables of the BFS are
equal to 0.
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Optimality condition

Theorem 3.9 (Su�icient optimality condition)
Let x be the basic solution w. r. t. B. If

c̄> := c> − c>B A−1
B A ≥ 0,

then x is an optimal solution of the LP.
c̄ is called vector of reduced costs.

Proof.
→ board

Example 3.10
→ board

26

Notes



Optimality condition not fulfilled

Assume that the optimality condition is not fulfilled.

I.e. c̄>N(s) = c>N(s) − c>B A−1
B A·N(s) < 0 for some N(s) ∈ N . Consider the

proof of Theorem 3.9:

c>x = c>B A−1
B b + (c>N − c>B A−1

B AN )xN

Then, c>x can be improved by increasing xN(s) from 0 to δ > 0 (where
xN(j) = 0 ∀N(j) ∈ N \ {N(s)})

But the new solution has to be feasible!

xB = A−1
B b − A−1

B A·N(s) xN(s)

!
≥ 0

Se�ing b̃ := A−1
B b and Ã·N(s) := A−1

B A·N(s) yields

=⇒xB = b̃ − Ã·N(s) xN(s) ≥ 0
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Optimality condition not fulfilled

Case 1: ãiN(s) ≤ 0 ∀i = 1, . . . ,m

In this case, xN(s) = δ can be arbitrarily increased without violating the
feasibility.

In this way, c>x can be made arbitrarily small, i. e., the LP is unbounded.

Theorem 3.11 (Criterion for unbounded LPs)

If x is a basic solution and if

c̄N(s) < 0 and A−1
B A·N(s) ≤ 0

for some N(s) ∈ N, then the LP is unbounded.
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Case 2: ∃i ∈ {1, . . . ,m} : ãiN(s) > 0

xB
!
≥ 0⇐⇒xB(i) = b̃i − ãiN(s) · xN(s) ≥ 0 ∀i ∈ {1, . . . ,m}

=⇒ xN(s) ≤
b̃i

ãiN(s)
∀i ∈ {1, . . . ,m} with ãiN(s) > 0

→ we increase xN(s) as much as possible i. e., we choose:

xN(s) := min

{
b̃i

ãiN(s)
: ãiN(s) > 0

}
(min ratio rule)

29

Notes



Case 2: ∃i ∈ {1, . . . ,m} : ãiN(s) > 0 (cont.)
Let i = r be an index where this minimum is a�ained. The new solution is
then given by:

xN(s) =
b̃r

ãrN(s)

xN(j) = 0 ∀j ∈ N \ {N(s)}

xB(i) = b̃i − ãiN(s) · xN(s) = b̃i − ãiN(s)
b̃r

ãrN(s)
, i ∈ {1, . . . ,m}

xB(r) = 0

−→ Basis exchange:

{
xB(r) leaves the basis

xN(s) enters the basis
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Example 3.12 (Ex. 3.2)
→ board
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Basis exchange

Let B be a basis and let B′ := {B(1), . . . ,B(r − 1),N(s),B(r + 1), . . . ,B(m)}
be the index set a�er the basis exchange.

−→ Is B′ again a basis and xB′ a basic solution?

N(s)

B(r)

B N
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Basis exchange

Lemma 3.13 (Steinitz exchange lemma)
Let B = {A1, . . . ,Am} be a basis of Rm and let

As =
m∑

i=1

λiAi (s /∈ {1, . . . ,m})

Then it holds that B′ := {A1, . . . ,Ar−1,As,Ar+1, . . . ,Am} is basis of Rm i�
λr 6= 0.

Proof.
see linear algebra lecture
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Basis exchange

Theorem 3.14
If B is a basis of A, then B′ is also a basis of A.

Proof.
→ board
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4. The Simplex Algorithm

4.1 Idea

4.2 Simplex tableau

4.3 Algorithm
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Idea of the Simplex algorithm

Idea:

As long as the optimality condition is not fulfilled

choose some index N(s) with c̄N(s) < 0
if the criterion for unboundedness is fulfilled

→ LP is unbounded (Thm. 3.11)

else
apply the min ratio rule
make a basis exchange

Here: E�icient organization of the basis exchange and the optimality test.
Let the basis B of A and the basic feasible solution x =

(
xB
xN

)
be given.
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Simplex tableau

Initial tableau:

T =

−z x1 . . . xn

1 c1 . . . cn 0
0 a11 . . . a1n b1
...

...
. . .

...
...

0 am1 . . . amn bm

=
1 c 0
0 A b

∈ R(m+1)×(n+2)

For the basis B we define:

TB :=
1 c>B
0 AB

∈ R(m+1)×(m+1)

Then it holds (since AB is regular):

T−1
B =

1 −c>B A−1
B

0 A−1
B

37
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Simplex tableau

Simplex tableau w. r. t. B:

T (B) := T−1
B T =

1 c> − c>B A−1
B A −c>B A−1

B b
0
... A−1

B A A−1
B b

0

= (tij) i=0,...,m
j=0,...,n+1

=

1 t01 . . . t0n t0n+1

0 t11 . . . t1n t1n+1
...

...
. . .

...
...

0 tm1 . . . tmn tmn+1

Since T−1
B is invertible, T (B) represents the same system of linear equations

as T .
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Interpretation of T (B)

Basic variable: Let j = B(i) ∈ B:
I A−1

B A·j = ei i-th unit vector
I cj − c>B A−1

B A·j = cj − c>B ei = cj − cB(i) = cj − cj = 0

⇒ T (B) contains unit vectors
(

0
ei

)
in columns corresponding

basic variable xB(i) = xj

Non-basic variable: Let j = N(i) ∈ N1:

I A−1
B A·j = A−1

B A·N(i) = Ã·N(i) =

 ã1N(i)
...

ãmN(i)


I cj − c>B A−1

B A·j = cN(i) − c>B A−1
B A·N(i) = c̄N(i)

reduced cost of the non-basic variable xN(i) = xj

Vector A−1
B b (last column)
I Values of the basic variable xB = A−1

B b

I simultaneously: b̃ =

 b̃1
...

b̃m

 = A−1
B b

1We adapt the notation from Theorem 3.11.
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Interpretation of T (B)

Scalar −c>B A−1
B b: (“top right”)

negative objective function value of the current basic solution:
c>x = c>B xB + c>N xN = c>B A−1

B b

Every row in the intial tableau corresponds to one constraint.
Known from linear algebra: elementary row operations (like e. g. to multiply
T−1

B with T ) transform the system of linear equations into an equivalent
system of linear equations.
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Example 4.1
→ board
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Simplex tableau

Definition 4.2
T (B) is called:

feasible :⇔ tin+1 ≥ 0 ∀i = 1, . . . ,m
(⇔ xB(i) ≥ 0 ∀i = 1, . . . ,m; feasibility)

optimal :⇔ tin+1 ≥ 0 ∀i = 1, . . . ,m and t0j ≥ 0 ∀j = 1, . . . , n
(⇔ c̄ ≥ 0)

unbounded :⇔ ∃N(s) ∈ N :

1. t0N(s) = c̄N(s) < 0
2. tiN(s) = ãiN(s) ≤ 0 ∀i = 1, . . . ,m

Note: These definitions are consistent with the previous definitions of
feasibility, the optimality condition and the criterion for unbounded LPs.
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Simplex algorithm

Basis exchange in the tableau:

I Choose a non-basic column N(s) with t0N(s) < 0 (negative reduced
cost)

I Apply the min ratio rule to this column:

δ := min

{
tin+1

tiN(s)
: tiN(s) > 0, i ∈ {1, . . . ,m}

}
Let δ = trn+1

trN(s)
with r ∈ {1, . . . ,m}
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Definition 4.3
A basis exchange B′ := B \ {B(r)} ∪ {N(s)} is called pivot operation. The
column N(s) of T (B) is caled pivot column and the row r pivot row. The
entry trN(s) is called pivot element.
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Simplex algorithm

Open question: How is the pivot operation in the tableau T (B) realized?
How does this lead to T (B′)?

I T (B′) contains the vector
(

0
er

)
in column N(s)

I Transform the column N(s) of T (B) into the r-th unit vector by
applying elementary row transformations.
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Simplex algorithm

Result: T (B′) = (̄tij) i=0,...,m
j=0,...,n+1

with

I t̄rj =
trj

trN(s)
∀j = 0, . . . , n + 1

I t̄ij = tij −
tiN(s)

trN(s)
· trj ∀i = 0, . . . ,m, i 6= r ∀j = 0, . . . , n + 1

⇒ t̄rN(s) = 1 and
t̄iN(s) = tiN(s) −

tiN(s)

trN(s)
· trN(s) = 0
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Algorithm 4.4 (Simplex algorithm)

Input: LP in standard form: min{c>x : A x = b, x ≥ 0} and BFS x =
(

xB
xN

)
w. r. t. to a given basis B.

1: Determine the Simplex tableau T (B)

2: while ∃j ∈ {1, . . . , n} : t0j < 0 do // Tableau not optimal
3: Choose j with t0 j < 0
4: if ti j ≤ 0 ∀i ∈ {1, . . . ,m} then
5: return "LP is unbounded."
6: else
7: Find r ∈ {1, . . . ,m} with

tr n+1

tr j
= min

{
ti n+1

ti j
: ti j > 0, i ∈ {1, . . . ,m}

}
and make a pivot operation with pivot element tr j .

8: return x∗ =
(

xB
xN

)
with xB(i) = ti n+1 (i = 1, . . . ,m), xN = 0 and

objective function value z∗ = c>x∗ = −t0 n+1 is an optimal solution of
LP.
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Simplex algorithm

Example 4.5
→ board
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Simplex algorithm

Remark 4.6
Open questions:

1. Why can we restrict ourselves to basic feasible solutions?
→ Fundamental theorem of linear programming

2. How do we find a feasible start basic solution?
→ 2-phase-method

3. Is the simplex algorithm finite?
→ degeneracy, cycling of the simplex, Bland’s pivot rule
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5. Fundamental Theorem of Linear Programming
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Fundamental theorem of linear programming

Given: LP in standard form:

min c>x

s.t. x ∈ P = {x ∈ Rn : A x = b}
x ≥ 0

Goal: Show that every feasible LP with bounded objective function value
has an optimal basic solution.

It follows: Justification that the simplex algorithm restricts to basic feasible
solutions (i. e., we do not overlook optimal solutions).
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Fundamental theorem of linear programming

Theorem 5.1
If P := {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅ (i. e. there exists a feasible solution),
then there exists a basic feasible solution in P.

Proof.
→ board
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Fundamental theorem of linear programming

Theorem 5.2 (Fundamental theorem of linear programming)
If P := {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅ and if the corresponding LP
min{c>x : Ax = b, x ≥ 0} is bounded, then there exists an optimal basic
feasible solution.

Proof.
→ board
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6. 2-Phase-Method

6.1 Degenerate simplex iteration

6.2 Cycling
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Finding a basic feasible solution

Goal: Find a feasible start basis (and basic solution) or show the
infeasibility of the LP!

Structure of the 2-Phase-Method:

Phase 1 Determination of a feasible start basis or proof of
infeasibility

Phase 2 (=̂ Simplex Algorithm, 4.4) Determination of an optimal
basic feasible solution or proof of unboundedness.
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Finding a basic feasible solution

Case (a) original constraints have the form

Ai·x ≤ bi with bi ≥ 0 ∀i = 1, . . . ,m

⇒ introduce slack variables

A x = b with A = (A | I), x = (x1, . . . , xn, xn+1, . . . , xn+m)

⇒ select the columns

B = {n + 1, . . . , n + m}

corresponding to slack variables as basis columns.

Then, x =
(

xB
xN

)
with xB(i) = xn+1 = bi is a b.f.s. (see Example 2.4).
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Finding a basic feasible solution

Case (b) A x = b, bi ≶ 0, i = 1, . . . ,m

I Transform the system in such a way, such that as many variables
as possible can be identified as slack variables of a constraint

I We introduce artificial variables x̂i for the remaining constraints
and obtain:

n∑
j=1

aijxj + x̂i = bi

I Note that this changes the feasible set of the LP! A solution of it
corresponds only to a feasible solution (x1, . . . , xn) of the original
LP if all artifical variables equal zero.
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Example 6.1
→ board
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2-Phase-Method - Phase 1

Idea: Enforce that all artificial variables have the value 0 and pivot
them out of the basis.
For this purpose, minimize the auxiliary objective function

h(x̃) :=
∑

x̂j s.t. Ã x̃ = b, x̃ ≥ 0

For this problem, we know a basic feasible solution!

Case 1: h(x̃∗) =
∑

x̂∗j > 0
Then, there exists no solution for Ã x̃ = b, x̃ ≥ 0 with x̂i = 0
for all artifical variables. Hence, there exists no solution for
the original system A x = b, x ≥ 0, i. e., the LP is infeasible.
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2-Phase-Method - Phase 1

Case 2: h(x̃∗) =
∑

x̂∗j = 0
⇒ x̂∗i = 0 ∀i
⇒ there exists a solution of the original system

Case 2a): All x̂∗i are non-basic variables:
⇒ all basic variables in the optimal solution of the auxiliary
LP are original variables
⇒ a basic feasible solution of the original LP is known

Case 2b): There exists a basic variable x̂∗i = x̂B(`) = 0:
(Note: Such a basic solution is called “degenerate”→ see
next chapter)
Pivot the artificial variable out of the basis, i. e., pivot with
t`j 6= 0, which belongs to an original variable.
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Algorithm 6.2 (2-Phase method)

Input: LP in standard form min{c>x : Ax = b, x ≥ 0} with b ≥ 0 (multiply Ai·x = bi by
(−1) if bi < 0).

1: Let I ⊆ {1, . . . ,m} be the index set of equations Ai·x = bi , in which a variable xs(i)

occurs exclusively, with ais(i) > 0.
2: for all i ∈ {1, . . . , |̄I|} with Ī := {1, . . . ,m} \ I do
3: Introduce an artificial variable x̂n+i ≥ 0.
4: if Ī 6= ∅ then // Phase 1
5: Ã :=

(
ãij
)

ãij :=



aij ∀(i, j) : i ∈ Ī, j ∈ {1, . . . , n}
aij

ais(i)
∀(i, j) : i ∈ I, j ∈ {1, . . . , n}

1 ∀(̄I(k), n + k) : k ∈ {1, . . . , |̄I|}
0 else

b̃i :=

bi ∀i ∈ Ī
bi

ais(i)
∀i ∈ I
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x̃ := (x1, . . . , xn, x̂n+1, . . . , x̂n+|̄I|)
>

6: B := {s(i) : i ∈ I} ∪ {n + 1, . . . , n + |̄I|}, x̃ =
(

x̃B
x̃N

)
with x̃B = b̃

7: Determine optimal solution x̃∗ of the LP min

{∑
i∈Ī

x̂i+n : Ã x̃ = b̃, x̃ ≥ 0

}
8: if

∑
i∈Ī x̂i+n > 0 then

9: return LP is infeasible.
10: Pivot all artificial variables out of the basis.
11: Remove columns n + 1 bis n + |̄I| from the optimal tableau.
12: Replace the objective coe�icients of the auxiliary objective by the original objective

c>x .
13: Apply elementary row operations to obtain t0B(i) = 0 for all basic columns B(i).

// Start phase 2
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Example 6.3
→ board
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Degenerate basic solution/LP

Definition 6.4

I A basic feasible solution x is called degenerate, if at least one of the
basic variables is equal to 0.

I Since xN = 0⇒ |{i : xi = 0}| > n−m for a degenerate BFS x .

I The basis corresponding to a degenerate BFS is also called degenerate.

I An LP (in standard form) is called non-degenerate, if it is feasible and
has no degenerate basic feasible solution.
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Degenerate simplex iteration

Definition 6.5
A simplex iteration is called degenerate, if it does not change the basic
solution (i. e., the min ratio rule results in 0) and, for this reason, the
objective function value does not change, too.

Example 6.6
→ board
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Theorem 6.7

In a non-degenerate LP, the Simplex Method stops a�er at most
(n

m

)
iterations (either it finds an optimal solution or it shows unboundedness).

Proof.
→ board
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Degenerate simplex iteration

Remark 6.8

1. Geometric interpretation: Consider a LP with feasible set
P = {x ∈ Rn : A x ≤ b}. If a BFS x̄ is degenerate, then there exist
more than n inequalities , s.t. Ai· x̄ = bi , i. e. the number of constraints
of the LP, which are satisfied with equality is greater than n, e. g. 3
lines intersect in one point.

2. Degenerate bases do not necessarily lead to degenerate simplex
iterations.

3. Degenerate simplex iterations only occur, if degenerate bases exist.

4. Degenerate simplex iterations only become problematic, if a
degenerate basis repeats.→ infinite loop
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Cycling of the Simplex Algorithm

Definition 6.9
The simplex algorithm is cycling, if one simplex tableau T (B) (w. r. t. to
some basis) appears in two di�erent iterations.

In this case, the algorithm does not terminate!
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Example 6.10 (Cycling of the Simplex Algorithm, by Beale (1955))

min−3/4 x1 + 20 x2 − 1/2 x3 + 6 x4

s. t. 1/4 x1 − 8 x2 − x3 + 9 x4 + x5 = 0

1/2 x1 − 12 x2 − 1/2 x3 + 3 x4 + x6 = 0

x3 + x7 = 1

x1, . . . , x7 ≥ 0

Choose starting basis B = {5, 6, 7} and apply the Simplex-algorithm with
the following pivot rule

I Choose the non-basis variable with the smallest reduced costs value
c̄j < 0.

I Choose the leaving basis variable according to the min-ratio-rule with
the smallest index.
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−3/4 20 −1/2 6 0 0 0 0
1/4 −8 −1 9 1 0 0 0
1/2 −12 −1/2 3 0 1 0 0
0 0 1 0 0 0 1 1

−→

0 −4 −7/2 33 3 0 0 0
1 −32 −4 36 4 0 0 0
0 4 3/2 −15 −2 1 0 0
0 0 1 0 0 0 1 1

−→

0 0 −2 18 1 1 0 0

1 0 8 −84 −12 8 0 0
0 1 3/8 −15/4 −1/2 1/4 0 0
0 0 1 0 0 0 1 1

−→

1/4 0 0 −3 −2 3 0 0
1/8 0 1 −21/2 −3/2 1 0 0

−3/64 1 0 3/16 1/16 −1/8 0 0

−1/8 0 0 21/2 3/2 −1 1 1
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−→

−1/2 16 0 0 −1 1 0 0

−5/2 56 1 0 2 −6 0 0
−1/4 16/3 0 1 1/3 −2/3 0 0

5/2 −56 0 0 −2 6 1 1

−→

−7/4 44 1/2 0 0 −2 0 0
−5/4 28 1/2 0 1 −3 0 0

1/6 −4 −1/6 1 0 1/3 0 0

0 0 1 0 0 0 1 1

−→

−3/4 20 −1/2 6 0 0 0 0
1/4 −8 −1 9 1 0 0 0
1/2 −12 −1/2 3 0 1 0 0
0 0 1 0 0 0 1 1
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Cycling

Theorem 6.11 (Bland’s pivot rule)
In step (3) of the simplex algorithm, choose

j = min{j : t0j < 0}

and in step (5), choose r such that

B(r) = min

{
B(i) : tij > 0 and

tin+1

tij
≤ tkn+1

tkj
∀k with tkj > 0

}
.

Then the simplex algorithm terminates a�er finitely many pivot operations
(i. e., cycling is prevented).
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Example 6.12 (Cycling of the Simplex Algorithm, by Beale (1955))

We apply the Simplex Method with Bland’s pivot rule to the problem from
Example 6.10.

− 3
4 20 − 1

2 6 0 0 0 0
1
4 −8 −1 9 1 0 0 0
1
2 −12 − 1

2 3 0 1 0 0
0 0 1 0 0 0 1 1

−→

0 −4 − 7
2 33 3 0 0 0

1 −32 −4 36 4 0 0 0
0 4 3

2 −15 −2 1 0 0
0 0 1 0 0 0 1 1
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−→

0 0 −2 18 1 1 0 0

1 0 8 −84 −12 8 0 0
0 1 3

8 − 15
4 − 1

2
1
4 0 0

0 0 1 0 0 0 1 1

−→

1
4 0 0 −3 −2 3 0 0
1
8 0 1 − 21

2 − 3
2 1 0 0

− 3
64 1 0 3

16
1
16 − 1

8 0 0

− 1
8 0 0 21

2
3
2 −1 1 1

−→

− 1
2 16 0 0 −1 1 0 0
− 5

2 56 1 0 2 −6 0 0
− 1

4
16
3 0 1 1

3 − 2
3 0 0

5
2 −56 0 0 −2 6 1 1

−→

0 24
5 0 0 − 7

5
11
5

1
5

1
5

0 0 1 0 0 0 1 1

0 − 4
15 0 1 2

15 − 1
15

1
10

1
10

1 − 112
5 0 0 − 4

5
12
5

2
5

2
5
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−→

0 2 0 21
2 0 3

2
5
4

5
4

0 0 1 0 0 0 1 1
0 −2 0 15

2 1 − 1
2

3
4

3
4

1 −24 0 6 0 2 1 1

An optimal solution of the problem is x∗ =
(

1 0 1 0 3
4 0 0

)>
with

optimal objective value z = − 5
4 .
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Cycling

Remark 6.13

1. If the simplex algorithm is cycling, then all corresponding pivot
operations must be degenerate

2. Degenerate pivot operations do not necessarily have to lead to cycling.

3. Geometric interpretation of cycling: The simplex algorithm gets stuck
in one extreme point.
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Contents

7. Duality

7.1 Dual Problem

7.2 Weak Duality

7.3 Strong Duality

7.4 Complementary slackness conditions

7.5 Dual Simplex Algorithm
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The Dual of a Linear Program

Definition 7.1
Given a linear program in standard form

min c>x

s.t. A x = b (LP)

x ≥ 0,

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm and x ∈ Rn.

The dual (linear) program or dual problem (DP) of (LP) is defined as:

max b>π

s.t. A>π ≤ c (DP)

π ≷ 0

where π = (π1, . . . , πm)> ∈ Rm are the dual variables and A>π ≤ c are
the dual constraints.
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Dual Problem

Example 7.2
→ board

Remark 7.3
In the proof of Theorem 3.9 we have already introduced the dual variables
π := c>B A−1

b .

Observation 7.4
If π is an arbitrary solution of the system

A>π ≤ c,

then any feasible solution x of (LP) satisfies

b>π = (Ax)>π = x>A>π ≤ x>c = c>x.
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Dual Problem

Theorem 7.5
The dual linear program of (DP) is (LP).

Proof.
→ board
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Dual Problem

Theorem 7.6
An LP in general form

min c>x

s.t. Ai· x = bi ∀i ∈ M

Ai· x ≥ bi ∀i ∈ {1, . . . ,m} \M =: M

xj ≥ 0 ∀j ∈ L

xj ≷ 0 ∀j ∈ {1, . . . , n} \ L =: L

has the dual LP

max b>π

s.t. A>·j π ≤ cj ∀j ∈ L

A>·j π = cj ∀i ∈ L

πi ≷ 0 ∀i ∈ M

πi ≥ 0 ∀j ∈ M
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Tucker Diagram

min c>x
a11 . . .. . . a1n b1
...

= ...
i ∈ M : πi ≷ 0

...
...

m
ax

b>
π

am1 . . .. . . amn

≥
bm

i ∈ M̄ : πi ≥ 0

≤ =

c1 . . .. . . cn

j ∈ L : xj ≥ 0 j ∈ L̄ : xj ≷ 0
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Dual Problem

Example 7.7
→ board

83

Notes



Weak duality theorem

Theorem 7.8 (Weak duality theorem)
Let (LP) be an LP in general form. If x is feasible for (LP) and if π is feasible
for (DP), then

b>π ≤ c>x

Proof.
→ board
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Strong duality theorem

Theorem 7.9 (Strong duality theorem)
Let (LP) and (DP) be a dual pair of linear programs in standard form.

a) If one of the two LPs is unbounded, then the corresponding dual
program is infeasible.

b) If one the two LPs has a finite optimal solution, then so has the other
and the optimal objective function values are equal.

c) (LP) and (DP) may both be infeasible.

Proof.
→ board
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Example 7.10
→ board
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Dual pairs

Corollary 7.11 (Possibilities for dual pairs)

primal
dual finite optimal

solution

feasible solution,
unbounded objective

function value

no feasible
solution

finite optimal
solution

X X X

feasible solution,
unbounded objective

function value
X X X

no feasible
solution

X X X

X: cannot happen
X: can occur

Notes



Complementary slackness conditions

Theorem 7.12
Let (LP) be an LP in general form and let (DP) be its dual. Furthermore, let
x and π be feasible solutions of (LP) and (DP), respectively.

Then x and π are optimal for (LP) and (DP), respectively

ui := πi
(
Ai· x − bi

)
= 0 ∀i = 1, . . . ,m

⇐⇒

{
vj := xj

(
cj − A>·j π

)
= 0 ∀j = 1, . . . , n

Proof.
→ board
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Algorithm 7.13 (Dual Simplex Algorithm)

Input: (LP) min{c>x : A x = b, x ≥ 0},
basis B, such that c> = c> − c>B A−1

B A ≥ 0. // dual feasible
1: Determine TB

2: while ti,n+1 � 0, ∀i ∈ {1, . . . ,m} do
3: Choose i ∈ {1, . . . ,m} with ti,n+1 < 0
4: if tij ≥ 0, ∀j = {1, . . . , n} then
5: return "LP is infeasible."
6: else
7: Choose s ∈ {1, . . . , n} with

t0 s

−ti s
= min

{
t0 j

−ti j
: ti j < 0

}
8: Compute a pivot step with pivot element −tis .
9: return x = (xB, xN ) with xB(i) = ti,n+1, i = 1, . . . ,m and xN = 0 is a

optimal solution.

89

Notes



Example 7.14
→ board.
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Example 7.15
If an optimization problem is solved in practice, it may be found that the modeling
was inadequate, i.e. that e.g. a constraint was forgo�en. It may also happen that a
problem needs to be solved for slightly di�erent input data, e.g. for example, the
objective function coe�icients c may change due to external conditions.

In this case, based on the already known primal or dual optimal solution, an
optimal solution of the modified problem can be determined. The advantage is
that usually only a few simplex iterations are necessary.

For a given problem min
{

c>x : Ax ≤ b, x ≥ 0
}

with primal optimal solution x∗,
dual optimal solution π∗ and optimal objective function value c>x∗, we consider
four cases:

1. The objective function coe�icients change: c  c′

2. The right hand side changes: b  b′

3. A new variable xn+1 ≥ 0 is added.

4. An additional constraint Am+1 · ≤ bm+1 with Am+1 · ∈ R1×n, bm+1 ∈ R is
added.
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