
Optimization I

Network Optimization

Dr. David Willems

Mathematical Institute

University of Koblenz-Landau

Campus Koblenz

1

Outline

1. Introduction: Definitions and Examples

2. Minimum Spanning Tree Problem

3. Shortest Path Problems

4. Network flow problems

5. Dynamic network flow problems

2

Introduction: Definitions and Examples

Outline

1. Introduction: Definitions and Examples

1.1 Graphs

1.2 Path

1.3 Connectedness, Cuts and Trees

3

Notes

Notes

Notes

Traveling salesman problem

Example 1.1

4

Evacuation

Example 1.2

5

Definition 1.3 (Undirected graph)
An undirected graph is a triple G = (V , E, γ) with a non-empty set of

nodes (or vertices) V , a set of edges (or arcs) E with V ∩ E = ∅ and a map

γ : E → {X : X ⊆ V with 1 ≤ |X | ≤ 2},

that assigns every edge its corresponding endpoints γ(e) ∈ V .

Example 1.4
→ board

6

Notes

Notes

Notes

Definition 1.5 (Directed graph)
A directed graph (or short digraph) is a quadrupel G = (V ,R, α, ω) with

the following properties:

1. V is a non-empty set of nodes (or vertices).

2. R is the set of arcs.

3. It holds that V ∩ R = ∅.
4. α : R→ V and ω : R→ V are maps. α(e) denotes the head of arc e,

ω(e) is the tail of e.

Example 1.6
→ board

7

Definition 1.7 (Loops, parallel edges, simple graphs)
Let G = (V ,R, α, ω) be a digraph.

• An arc r ∈ R is called loop if α(r) = ω(r).

• A graph G is called loopless if it contains no loops.

• Two arcs r1, r2 ∈ R are called parallel, if α(r1) = α(r2) and

ω(r1) = ω(r2).

• A graph G is called simple if it contains neither loops nor parallel arcs.

Example 1.8
→ board

Remark 1.9
In the following, we usually assume that G is simple. In this cases, every

arc r ∈ R is uniquely identified by the pair (α(r), ω(r)).

8

Definition 1.10
Let G = (V ,R, α, ω) be a digraph.

• A node v ∈ V is called incident to an arc r ∈ R if v ∈ {α(r), ω(r)}.

• Two nodes u, v ∈ V are called adjacent i� there exists an arc r ∈ R that is

incident to u and v .

• For a node v ∈ V we call

• δ+
G (v) := {r ∈ R : α(r) = v} the outgoing arcs of v .

• δ−G (v) := {r ∈ R : ω(r) = v} the ingoing arcs on v .

• N+
G (v) := {ω(r) : r ∈ δ+

G (v)} the successor set of v .

• N−G (v) := {α(r) : r ∈ δ−G (v)} the predecessor set of v .

• g+
G (v) :=

∣∣δ+
G (v)

∣∣
the out-degree of v .

• g−G (v) :=
∣∣δ−G (v)

∣∣
the in-degree of v .

• gG(v) := g+
G (v) + g−G (v) the degree of v .

Remark 1.11
Usually we drop the index G if G is clear from the context.

Example 1.12
→ board

9

Notes

Notes

Notes

Complexity of Algorithms

Definition 1.13 (Landau notation)
Let M be the set of all real-valued functions f : N→ R. Every function

g ∈ M then defines three classes of functions as follows:

O(g) := {f ∈ M : ∃c ∈ R, n0 ∈ N : ∀ n ≥ n0 : f (n) ≤ c · g(n)}
Ω(g) := {f ∈ M : ∃c ∈ R, n0 ∈ N : ∀ n ≥ n0 : f (n) ≥ c · g(n)}
Θ(g) := O(g) ∩ Ω(g)

We call a function f of polynomial magnitude in n, if there exists a

polynomial g (e. g. g(n) = n3
) such that f ∈ O(g).

A function f grows exponentially in n if f (n) cannot be bounded by a

polynomial function, e. g. g(n) = 2
n
.

10

Complexity of Algorithms

Model of computation

• For this part of the lecture, we’re interested in the running times of

the algorithms we’re going to develop.

• Our model of computation is the Unit-Cost RAM (Random Access

Machine); a “machine” that has countable many registers.

• The following operations can be performed in one clock cycle:

• Reading and writing numbers.

• Comparison of two registers.

• Conditional branching.

• Addition, subtraction, multiplication and division.

• The complexity of an algorithm is a function depending on the input

size.

11

Complexity of Algorithms

Model of Computation

• Usually, integers are coded as binary strings. p ∈ N thus has the

coding length of dlog
2
(p + 1)e+ 1 bits. We need dlog

2
(p + 1)e bits to

represent |p| and an additional bit for the sign.

• A fractional number p/q with q ≥ 1 and p, q ∈ Z coprime has thus the

coding length dlog
2
(p + 1)e+ dlog

2
(q + 1)e+ 1.

• We say an algorithm has worst-case (time) complexity T , if the running

time for all inputs of size ` can be bounded from above by T (`).

12

Notes

Notes

Notes

Definition 1.14 (Adjacency matrix)
Let G = (V , E) be a digraph and n = |V |. Then, the adjacency matrix
A = (aij)n×n ∈ Rn×n

is a matrix with entries

aij = |{r ∈ R : α(r) = vi and ω(r) = vj}| .

For undirected graphs H we analogously define the adjacency matrix as

aij = |{e ∈ E : γ(e) = {vi, vj}}| .

Example 1.15
→ board

Observation 1.16
For undirected graphs the adjacency matrix is symmetric.

13

Definition 1.17 (Incidence matrix)
Let G = (V ,R) be a loop-less digraph, n = |V | and R = {r1, . . . , rm}.
Then, the incidence matrix I ∈ Rn×m

is a matrix with

ikl :=


1 if α(rl) = vk

−1 if ω(rl) = vk

0 otherwise.

For undirected graphs we define

ikl :=

{
1 if vk ∈ γ(el)

0 otherwise.

Example 1.18
→ board

14

Remark 1.19
Note that the rows of the incidence matrix I are linearly dependent for

every digraph G. If the matrix obtained by removing a row from I has full

rank, it is called full rank incidence matrix.

Remark 1.20
In the case of an digraph G, the incidence matrix I is unimodular, that

means every quadratic submatrix has determinant +1, −1 or 0.

Observation 1.21
Let G = (V , E) be a (di)graph with |V | = n and |E| = m.

• The space needed to save the adjacency matrix is Θ(n2) and is

independent of the number of edges in G.

• The space needed to save the incidence matrix of G is Θ(nm).

15

Notes

Notes

Notes

Comparison of graph storage techniques
The following table gives the time complexity for three elementary graph

operations depending on their storage:

1. Is there an arc from v to w? (short: (v,w) ∈ R?)

2. What is the out-degree of v? (short: g+(v) =?)

3. Exists a node with in-degree g−(v) = 0? (short: ∃v : g−(v) = 0?)

Storage Memory (v,w) ∈ R? g+(v) =? ∃v : g−(v) = 0?

Adjacency matrix Θ(n2) O(1) O(n) O(n2)

Incidence matrix Θ(nm) O(m) O(m) O(nm)

16

Definition 1.22 (Paths, cycles)

• Let G = (V ,R) be a digraph. A path in G is a finite sequence

P = (v0, r1, v1, . . . , rk , vk)

with k ≥ 0, such that v0, v1, . . . , vk ∈ V and r1, . . . , rk ∈ R and

α(ri) = vi−1 as well as ω(ri) = vi for i = 1, . . . , k.

• We define the starting node of P as α(P) = v0 and the end node as

ω(P) = vk .

• We sometimes call P a v0-vk-path.

• The length |P| of P is the number of traversed arcs in the path.

• If α(P) = ω(P) and k ≥ 1 we call P a cycle.

• A path is called elementary if it contains—except for the case, that

start and end coincide—no node is traversed more than once.

Example 1.23
→ board

Definition 1.24 (Connectedness and cuts)
Let G = (V , E) be a graph.

• G is called connected if for all v1, v2 ∈ G there exists an v1-v2-path in G.

• A disconnecting set of edges is a subset Q ⊆ E such that

G \ Q := (V , E \ Q) is unconnected.

• A cut Q is minimal disconnecting set of edges, i.e. any subset of Q is

not disconnecting.

• A cut can be wri�en in the form Q = (X , X̄) as the set of edges with

one endpoint in X and one endpoint in X̄ . (X , X̄ ⊆ V , X̄ = V \ X)

• Let s, t ∈ V and s 6= t , then a s-t-cut is a cut such that s ∈ X and

t ∈ X̄ .

Example 1.25
→ board

18

Notes

Notes

Notes

Definition 1.26 (Subgraphs and trees)
Let G = (V , E) be a graph.

• A subgraph/subdigraph of G is a graph/digraph G′ = (V ′, E ′) with

V ′ ⊆ V and E ′ ⊆ E .

• A spanning subgraph/subdigraph of G is a subgraph/subdigraph

G′ = (V ′, E ′) with V ′ = V .

• A graph/digraph is called acyclic if it contains no cycle/dicycle.

• A tree is a connected, acyclic graph.

• A spanning tree is a connected, acyclic, spanning subgraph of G.

• We call vertex v ∈ VT leaf of a tree T = (VT , ET) if there exists exactly

one edge in e ∈ ET , which has v as an endpoint.

Example 1.27
→ board

19

Theorem 1.28
Equivalent characterizations for trees Let G = (V , E, γ be an undirected
graph. Then, the following statements are equivalent:

1. G is a tree.

2. G contains no elementary cycle, but every supergraph of G with same
node-set contains an elementary cycle.

3. For every pair u, v ∈ V exists exactly one elementary path P with
α(P) = u and ω(P) = v.

4. G is connected and for every edge e ∈ E the graph G′ = (V , E \ {e}, γ)

is not connected.

5. G is connected and |E| = |V | − 1.

6. G contains no elementary cycle and |E| = |V | − 1.

20

Minimum Spanning Tree Problem

Outline

2. Minimum Spanning Tree Problem

2.1 Kruskal’s Algorithm

2.2 Algorithm of Prim

2.3 IP Formulation

21

Notes

Notes

Notes

Minimum Spanning Tree Problem (MST)

Given a graph G = (V , E) and cost coe�icients cij ∀(i, j) ∈ E on the edges,

find a minimum spanning tree (MST) T = (V , E(T)) of G, i. e.

min
T∈T

c(T) = min
T∈T

∑
e∈E(T)

ce

where T denotes the set of all spanning trees of G.

22

Minimum Spanning Tree Problem (MST)

Example 2.1
−→ board

Remark 2.2
The MST problem has many applications in infrastructure design

problems or occurs as a subproblem, e.g. design of communication

networks, gas networks, highways.

Remark 2.3
In the following, we assume that the graph G = (V , E) is simple. This is

no restriction, since a spanning tree never contains loops and in the case

of parallel edges only the cheapest edge is included.

Additionally, we assume that G is connected.

23

Minimum Spanning Tree Problem (MST)

Definition 2.4
We call a subset F ⊆ E of edges of G error free, if there exists a MST F ∗

with F ⊆ E(F ∗). An edge e ∈ E is called promising for F if F ∪ {e} is

error free too.

Theorem 2.5
Let F ⊆ E be error free and (A,B) a cut in G with δ(A)∩ F = ∅. If e ∈ δ(A)

is an edge with minimum weight in δ(A), then e is promising for F .

Proof.
→ board

Corollary 2.6
Let F ⊆ E be error free and U be a connected component of (V , F). If e is
an edge with minimum weight in δ(U), then e is promising for F .

Proof.
Follows directly from Theorem 2.5, since δ(U) ∩ F = ∅.

24

Notes

Notes

Notes

Kruskal’s algorithm

Algorithm 1: Kruskal’s Algorithm

Input : An undirected graph G = (V , E, γ) with edge

weights c : E → R

Output: The set of edges EF of a MST

1 Sort the edges increasingly: c(e1) ≤ · · · ≤ c(em)

2 EF = ∅
3 for i := 1 . . . ,m do
4 if (V , EF ∪ {ei}, γ) is acyclic then
5 EF := EF ∪ {ei}

6 return EF

25

Kruskal’s algorithm

Example 2.7
→ board

Theorem 2.8
For a connected graph G = (V , E, γ), Kruskal’s algorithm computes a
minimum spanning tree.

Proof.
→ board

26

Kruskal’s algorithm

Complexity of Kruskal’s algorithm

• Sorting all m edges takes O(m log m) time.

• The algorithm stops a�er n− 1 iterations

• Time to check if acyclic O(m)

• For a naıve implementation we have a worst-case running time of

O(mn)

27

Notes

Notes

Notes

Kruskal’s algorithm

Theorem 2.9
Using the disjoint set data structure, Kruskal’s algorithm can be
implemented with a worst-case running time of O(m log m).

Theorem 2.10
Using even more sophisticated data structures, Kruskal’s algorithm can be
implemented with a worst-case running time of O(mα(n)) plus the time
needed to sort the edges.

Remark 2.11
The function α in Theorem 2.10 is called inverse Ackermann function. α

grows extremely slow, it is α(n) ≤ 4 for n ≤ 10
684

.

28

The algorithm of Prim

Algorithm 2: The algorithm of Prim

Input : An undirected graph G = (V , E, γ) with edge weights

c : E → R

Output: The set of edges ET of a MST

1 Choose s ∈ V arbitrarily, set ET = ∅ and S := {s}
2 while S 6= V do
3 Choose an edge (u, v) ∈ δ(S) with minimum cost. Let u ∈ S and

v ∈ V \ S
4 Set ET := ET ∪ {(u, v)} and S := S ∪ {v}

5 return ET

29

The algorithm of Prim

Example 2.12
→ board

Theorem 2.13
For a connected graph G = (V , E, γ), the algorithm of Prim computes a
MST.

Proof.
Follows from Corollary 2.6 via induction, since S is always a connected

component of G.

30

Notes

Notes

Notes

Complexity of Prim’s Algorithm

• In every iteration one edge is added to the tree (n− 1 iterations).

• Every iteration takes O(n) time to find the minimum cost edge.

• This leads to a worst-case running time of O(n2) for a naïve

implementation.

• more e�icient if implemented using a Fibonacci-heap for the not

connected vertices sorted wrt. to the cost of adding to the tree:

O(m + n log n)

31

Comparison

Algorithm run time Properties

Prim O(n2)

[O(m + n log n)

e�. Implem.]

• Iteratively increase the node set S by

adding a cost minimal edge

• For dense graphs faster than Kruskal.

• E�icient implementation:

Fibonacci-heap

Kruskal O(m n)

[O(mα(n)) e�.

Implem.]

• Add iteratively a cost minimal edge

which does not form a cycle

• For thin graphs faster than Prim.

• The sorting algorithm determines the

complexity

IP Formulation

Let G = (V , E) be a graph with |V | = n nodes. We model MST as an

integer program:

(Binary) decision variables xij with

xij :=

{
1 if (i, j) ∈ E(T)

0 otherwise

and cost coe�icients Cij with

Cij :=

{
cij if (i, j) ∈ E

∞ otherwise

33

Notes

Notes

Notes

IP Formulation

min
n∑

i=1

n∑
j=1

Cij xij

s. t.

n∑
i=1

n∑
j=1

xij = n− 1

∑
i∈S

∑
j∈S
i<j

xij ≤ |S| − 1 ∀S ⊂ V

xij ∈ {0, 1}
or xij ∈ [0, 1]

or xij ≥ 0

34

IP Formulation

Remark 2.14

• The previous IP formulation can be solved as an LP, since every

extreme point of the feasible polyhedron is integral.

• x ≤ 1 follows from second constraint with |S| = 2

• Drawback: this formulation has an exponential number of constraints!

35

Shortest Path Problems

Outline

3. Shortest Path Problems

3.1 Shortest Path Problem

3.2 Shortest path problem with negative costs

3.3 The all-pair shortest path problem

36

Notes

Notes

Notes

Shortest Path Problem

Assumptions for this part:

• A simple digraph G = (V ,R). As for spanning trees, this is no loss of

generality.

• A function c : R→ R that assigns weights or costs to every arc in the

graph.

Definition 3.1
Let G = (V ,R) be a digraph and c be a cost function as above. The length
(or weight or cost) c(P) of a path P = (v0, r1, v1, . . . , rk , vk) in G is defined

by

c(P) :=
k∑

i=1

c(ri).

The length of a path P = (v0) without arcs is thus c(P) = 0.

37

Shortest (Di-)Path Problem

Shortest (Di-)Path Problem
Let s ∈ V . For all vertices i ∈ V \ {s} compute a shortest path, i.e. a path

Psi with minimum cost/length/weight

c(Psi) =
∑
r∈Psi

c(r).

38

Definition 3.2
The distance distc(u, v,G) of two nodes u, v ∈ V with respect to the

weight function c is given by

distc(u, v,G) := inf {c(P) : P is a path from u to v in G} .

Remark 3.3
As usual, we set inf(∅) = +∞.

Remark 3.4

1. If u 6= v and v is not reachable from u, we thus have distc(u, v) = +∞.

2. If u and v coincide there are only two possibilities: Either it holds that

distc(u, u) = 0 or distc(u, u) = −∞.

Example 3.5
→ board.

39

Notes

Notes

Notes

Observation 3.6
Let P be a shortest path from u to v and w is traversed by P . The partial

path Puw from u to w is a shortest u-w-path. Analogously for Pwv .

Proof.
→ board

Lemma 3.7
Let s ∈ V. Then it holds that

distc(s, v) ≤ distc(s, u) + c(u, v) for all (u, v) ∈ R.

Proof.
→ board.

40

Definition 3.8 (Reduced costs, potential)
Let p : V → R be a node weighting. We define the reduced costs
cp : R→ R by

cp(u, v) := c(u, v) + p(u)− p(v).

The node weighting is called potential for c, if for all (u, v) ∈ R it holds

that cp(u, v) ≥ 0, thus

p(v) ≤ p(u) + c(u, v) for all (u, v) ∈ R.

Observation 3.9
If for s ∈ V all the values distc(s, v) are finite, then according to

Lemma 3.7, p(v) := distc(s, v) is a potential.

41

Let P = (v0, . . . , vk) be a path from v0 to vk . Then it holds that

cp(P) =
k−1∑
i=0

(
c(vi, vi+1) + p(vi)− p(vi+1)

)
=

k−1∑
i=0

c(vi, vi+1) +
k−1∑
i=0

(
p(vi)− p(vi+1)

)
= c(P) + p(v0)− p(vk),

since the second sum is a telescoping sum.

Observation 3.10

• In the transition from c to cp
, the length of every way from v0 to vk

di�ers by the number p(v0)− p(vk) that is independent of the way.

• If P is a cycle it holds that v0 = vk and thus c(P) = cp(P).

42

Notes

Notes

Notes

Observation 3.11 (Transition to reduced costs)

Let p : V → R be a node weighting.

1. P is a shortest u-v-path w.r.t. c if and only if P is a shortest u-v-path

w.r.t. cp
.

2. For every path P in G it holds that c(P) = cp(P) + p(ω(P))− p(α(P)).

3. For every cycle C in G it holds that c(C) = cp(C).

If we are given a potential p in G, it holds that cp(u, v) ≥ 0 for all

(u, v) ∈ R.

According to Observation 3.11 we can lead back the problem of finding a

shortest path with respect to c to the problem of finding a shortest path

with respect to the reduced costs cp
.

43

Theorem 3.12
Let G = (V ,R) be a simple digraph and c : R→ R be a weight function. A
potential p in G exists if and only if there is no cycle with negative length in
G. If c : R→ Z is integral, we can choose p to be integral too.

Proof.
→ board.

Definition 3.13 (Shortest path tree)
Let G be as above. A shortest path tree rooted in s is a tree T = (V ′,R′)
with the following properties:

1. V ′ is the set of nodes that is reachable from s.

2. For all v ∈ V ′ \ {s} the unique path from s to v in T is a shortest path

from s to v in G.

44

Remark 3.14
A shortest path tree is not necessarily unique.

Example 3.15
→ board.

Theorem 3.16
Let s ∈ V be in such a way that every reachable cycle in G has non-negative
weight. Then a shortest path tree emanating from s exists in G.

Proof.
→ board.

45

Notes

Notes

Notes

The algorithms that we’re going to look at maintain a predecessor graph
Gπ that is defined as follows:

Definition 3.17
Let Gπ = (Vπ,Rπ) with

Vπ := {v ∈ V : π[v] 6= nil} ∪ {s}
Rπ := {(π[v], v) ∈ R : v ∈ Vπ ∧ v 6= s}.

We will show that Gπ is a shortest path tree with respect to s.

46

The algorithms that we’re going to look at share the same initialization

Init from Algorithm 3.

Algorithm 3: Initialization for shortest path algorithms

Init(G, s)

1 forall v ∈ V do
2 d[v] := +∞
3 π[v] := nil

4 d[s] := 0

The values d[v] for v ∈ V are upper bounds for distc(s, v) that are adjusted

during the runtime.

47

The algorithms also share the following method Test shown in Algorithm 4.

Algorithm 4: Algorithm that checks for an arc (u, v) ∈ R, whether

it can be used to find a shorter path from s to v than the previously

known with length d[v]

Test(u, v)

1 if d[v] > d[u] + c(u, v) then
2 d[v] := d[u] + c(u, v)

3 π[v] := u

By calling Test(u, v) for an arc (u, v) ∈ R it is checked whether the arc

(u, v) can be used to construct a shorter way from s to v than the current

upper bound d[v].

48

Notes

Notes

Notes

Theorem 3.18
An algorithm is initialized with Algorithm 3 and performs an arbitrary
number of test steps (Algorithm 4). Then the following holds during the
runtime of the algorithm:

1. For the reduced costs cd with respect to the node weighting d it holds
that cd (u, v) ≤ 0 for all (u, v) ∈ Rπ .

2. d[v] ≥ distc(s, v) for all v ∈ V.

3. Every cycle in Gπ has negative length with respect to c and cd .

4. If no cycle with negative length in G is reachable from s, the predecessor
graph Gπ = (Vπ,Rπ) is a tree with root s and Gπ contains for every
v ∈ Vπ \ {s} a path from s to v with length at most d[v].

Proof.
→ board.

49

Corollary 3.19
If an algorithm a�er a number of iterations generates d[v] ≤ distc(s, v) for
every v ∈ V, it holds that d[v] = distc(s, v) for all v ∈ V and Gπ is a
shortest path tree rooted in s.

Proof.
→ board.

According to Theorem 3.18 and Corollary 3.19 the “only” thing we have to

do is to find a suitable sequence of test-steps, such that d[v] = distc(s, v)

holds.

50

Algorithm 5: Dijkstra’s algorithm

Dijkstra(G, c, s)

Input : A directed graph G = (V ,R) with non-negative arc weight

function c : R→ R+
and a node s ∈ V

Output: For all v ∈ V the distance distc(s, v) and a tree of shortest paths

emanating from s

1 Init(G, s)

2 PERM := ∅ // PERM is the set of permanently marked nodes

3 while PERM 6= V do
4 Choose u ∈ Q := V \ PERM with minimal key d[u].

5 PERM := PERM ∪ {u}
6 forall adjacent nodes v of u with v /∈ PERM do
7 Test(u, v)

8 return d[] and Gπ // Gπ is spanned by the predecessor pointers π

51

Notes

Notes

Notes

Example 3.20 (SPP with nonnegative cost)
→ board

Theorem 3.21
A�er termination of Dijkstra’s algorithm, it holds that d[v] = distc(s, v) for
all v ∈ V and Gπ is a shortest path tree rooted in s.

Proof.
→ board.

Example 3.22 (SPP with general cost)
→ board

52

Theorem 3.23
A naïve implementation of Dijkstra’s algorithm solves the shortest dipath
problem with nonnegative costs in O(n2) time.

Proof.
→ board

Remark 3.24
Using more sophisticated data structures (Fibonacci-Heaps similar as in

the algorithm of Prim), Dijkstra’s algorithm can be implemented with a

worst-case running time of O(m + n log n).

53

As we have seen in Example 3.22, Dijkstra’s algorithm fails if we allow

negative weights on the arcs in G.

The following algorithm by Bellman and Ford (Algorithm 6) is capable of

dealing with negative weights and is able to detect negative cycles in G.

The algorithm works in n steps. In every step every arc is checked exactly

once.

Lemma 3.25
At the end of step k = 1, 2, . . . , n− 1 in Algorithm 6 it holds for all v ∈ V
that

d[v] ≤ min{c(P) : P is a path from s to v with at most k arcs}.

Proof.
→ board.

54

Notes

Notes

Notes

Algorithm 6: Algorithm of Bellman and Ford

Bellman-Ford(G, c, s)

Input : A directed graph G = (V ,R) with arc weight function c : R→ R
and a node s ∈ V

Output: For all v ∈ V the distance distc(s, v) and a tree of shortest paths

emanating from s

1 Init(G, s)

2 for k := 1, . . . , n− 1 do
3 forall (u, v) ∈ R do
4 Test(u, v)

5 return d[] and Gπ // Gπ is spanned by the predecessor pointers π

55

Example 3.26
→ board.

Theorem 3.27

1. If G contains no cycle of negative length that is reachable from s, at the
termination of Algorithm 6 it holds that d[v] = distc(s, v) for all v ∈ V.
Moreover, Gπ is a shortest path tree rooted in s.

2. The algorithm of Bellman and Ford can be implemented with a
worst-case running time of O(mn).

Proof.
→ board.

56

For the last theorem we assumed that no cycle with negative length is

reachable from s. In the following, we show how to modify the algorithm

of Bellman and Ford to detect cycles with negative length.

Our modification is that, at the end of the algorithm, we iterate over all

arcs once again and check the condition d[v] ≤ d[u] + c(u, v). If it holds

that d[v] > d[u] + c(u, v) for one arc, we declare this as a certificate for a

cycle of negative length.

Example 3.28
→ board.

57

Notes

Notes

Notes

Algorithm 7: Algorithm that tests if G contains a cycle with negative

length

Test-Negative-Cycle(G, c, d)

Input : A directed graph G = (V ,R) with arc weight function c : R→ R
and the distance values d of the algorithm of Bellman and Ford

Output: The information whether G contains a cycle of negative length or

not

1 forall (u, v) ∈ R do
2 if d[v] > d[u] + c(u, v) then
3 return “Yes”

4 return “No”

58

Theorem 3.29
Algorithm 7 decides in O(m + n) time a�er the termination of the
algorithm of Bellman and Ford whether G contains a cycle of negative
length that is reachable from s or not.

Proof.
→ board.

Remark 3.30

1. We can decide in O(nm + m + n) = O(nm) time whether a graph

contains a cycle of negative length or not.

2. In an additional O(n) time a cycle with negative length can be

constructed if we know an arc (u, v) ∈ R with d[v] > d[u] + c(u, v).

Theorem 3.31
For a directed graph G we can construct a cycle of negative length in O(nm)

time or determine that no such cycle exists.

59

In this section we look at the problem to solve the all-pair shortest path

problem. In addition to the assumptions at the beginning of this chapter

we assume that no cycle with negative length exists in G (this can be

checked in O(mn) time).

In principle, we could determine all distances distc(u, v) by applying

n-times the algorithm of Bellman and Ford; once for every node v ∈ V as

start node s. This leads to a worst-case complexity of O(n2m).

In the following, we show how to do be�er with the concept of dynamic
programming.

60

Notes

Notes

Notes

The idea of the algorithm of Floyd and Warshall is based on a recursion for

the distance values.

We number the nodes V = {v1, . . . , vn} in an arbitrary manner and define

for vi, vj ∈ V and k = 0, 1, . . . , n the value dk(vi, vj) as the length (w.r.t. c)

of a shortest path from vi to vj , that traverses only the nodes

{vi, vj, v1, . . . , vk}.

If no such path exists, we set dk(vi, vj) := +∞.The distance distc(vi, vj)

then equals dn(vi, vj).

For k = 0 the path may only traverse vi and vj , it thus holds that

d0(vi, vj) :=

{
c(vi, vj) if (vi, vj) ∈ R

∞ else

.

61

Let P be a shortest path from vi to vj that only traverses {vi, vj, v1, . . . , vk}.
Since, by assumption, G contains no cycle with negative length, we may

assume that P is an elementary path.

If vk+1 is not traversed by P , it is c(P) = dk(vi, vj). If vk+1 is contained in P ,

we can split up P into two partial paths Pvi,vk+1
from vi to vk+1 and Pvk+1,vj

from vk+1 to vj . Then it holds that c(Pvi,vk+1
) = dk(vi, vk+1) and

c(Pvk+1,vj) = dk(vk+1, vj).

So for k ≥ 1 we get the following recursion

dk(vi, vj) = min {dk(vi, vj), dk(vi, vk+1) + dk(vk+1, vj)} .

This leads to the following algorithm. . .

62

Algorithm 8: Algorithm of Floyd and Warshall

Floyd-Warshall(G, c)

Input : A directed graph G = (V ,R) with arc weight function c : R→ R
Output: For all u, v ∈ V the distance Dn[u, v] = distc(u, v)

1 forall vi, vj ∈ V do
2 D0[vi, vj] := +∞

3 forall (vi, vj) ∈ R do
4 D0[vi, vj] := c(vi, vj)

5 for k = 0, . . . , n− 1 do
6 for i = 1, . . . , n do
7 for j = 1, . . . , n do
8 Dk+1[vi, vj] := min{Dk [vi, vj],Dk [vi, vk+1] + Dk [vk+1, vj]}

9 return Dn[]

63

Notes

Notes

Notes

Example 3.32
→ get the example on the lecture’s homepage.

Theorem 3.33
If G contains no cycle of negative length, the algorithm of Floyd and
Warshall solves the all-pair shortest path problem in O(n3) time.

Proof.
Obvious.

64

Network flow problems

Outline

4. Network flow problems

4.1 Flows and cuts

4.2 Residual networks and flow augmenting paths

4.3 The max-flow-min-cut theorem

4.4 The algorithm of Ford and Fulkerson

4.5 The algorithm of Edmonds and Karp

4.6 Lower bounds and b-flows

4.7 Flow decomposition

4.8 Min cost flows

65

Flows and cuts

Assumptions for this chapter
Within this chapter, G denotes a finite directed graph G = (V ,R, α, ω)

that does not necessarily have to be simple.

Additionally, let f : R→ R be an arbitrary function. We interpret f (r) as

flow value on the arc r .

66

Notes

Notes

Notes

Flows and cuts

Definition 4.1 (Excess of a node v)
For some node v ∈ V , we denote by

f
(
δ+(v)

)
=

∑
r∈δ+(v)

f (r)

the amount of flow leaving v and by

f
(
δ−(v)

)
=

∑
r∈δ−(v)

f (r)

the amount of flow entering node v .

We denote by

excessf (v) := f
(
δ−(v)

)
− f

(
δ+(v)

)
the excess of node v ∈ V .

67

Definition 4.2 (Flow, feasible flow, maximum flow)

• Let s, t ∈ V with s 6= t . An (s, t)-flow is a function f : R→ R+ with

excessf (v) = 0 (1)

for all v ∈ V \ {s, t}.
• The node s is called source node, the node t is called sink node of flow

f . If s and t are clear from the context, we shortly say flow.

• We call val(f) := excessf (t) the flow value corresponding to f .

• If u : R→ R is a capacity function on the arcs of G, we say a flow f is

feasible if

0 ≤ f (r) ≤ u(r) (2)

for all r ∈ R.

• A feasible flow is called maximum (s, t)-flow if it has maximum value

of all feasible (s, t)-flows.

68

Flows and cuts

Example 4.3
→ board

Remark 4.4

• The conditions excessf (v) = 0 are called flow conservation constraints
or mass balance constraints. All nodes except s and t are in balance.

• The inequalities 0 ≤ f (r) ≤ u(r) for all r ∈ R are called capacity
constraints.

69

Notes

Notes

Notes

Flows and cuts

Definition 4.5
Let (S, T) be a cut in G. We define the forward part of a cut by

δ+(S) := {r ∈ R : α(r) ∈ S and ω(r) ∈ T}

and the backward part of a cut by

δ−(S) := {r ∈ R : α(r) ∈ T and ω(r) ∈ S}.

Definition 4.6 (Excess of a cut)
For a set S ⊆ V we define the excess of S by

excessf (S) := f
(
δ−(S)

)
− f

(
δ+(S)

)
.

70

Flows and cuts

Lemma 4.7
Let f : R→ R be an arbitrary function and S ⊆ V. Then it holds that

excessf (S) =
∑
v∈S

excessf (v).

Proof.
→ board.

71

Flows and cuts

Lemma 4.8

If f is an (s, t)-flow and (S, T) an (s, t)-cut, then it holds that

val(f) = f
(
δ+(S)

)
− f

(
δ−(S)

)
.

In particular, it follows that excessf (t) = − excessf (s).

Proof.
→ board.

72

Notes

Notes

Notes

Flows and cuts

Definition 4.9 (Capacity of an (s, t)-cut)
If (S, T) is an (s, t)-cut in G with capacities u : R→ R+ on the arcs, we

denote by

u
(
δ+(S)

)
=

∑
r∈δ+(S)

u(r)

the capacity of the cut (S, T).

We say (S, T) is a minimum (s, t)-cut, if it has minimum capacity among

all (s, t)-cuts.

Remark 4.10
Intuitively, the capacity of a cut (S, T) is an upper bound for the flow

value of a feasible flow f . That this intuition is correct follows from

Lemma 4.8.

73

Flows and cuts

Lemma 4.11

If f is a feasible (s, t)-flow and (S, T) an (s, t)-cut, then it holds that

val(f) ≤ u
(
δ+(S)

)
.

Since f and (S, T) are arbitrary, it follows that

max
f is a feasible (s, t)-flow in G

val(f) ≤ min
(S,T) is an (s,t)-cut in G

u
(
δ+(S)

)
.

74

Flows and cuts

Corollary 4.12
If f is a feasible flow and (S, T) a cut in G such that the flow value val(f)

equals the capacity u (δ+(S)) of the cut, then f is a maximum flow and
(S, T) is a minimum cut.

75

Notes

Notes

Notes

Residual networks and flow augmenting paths

Example 4.13
→ board.

Definition 4.14 (Residual network)
Let f be a feasible flow in G and l, u be lower and upper capacity bounds

with 0 ≤ l(r) ≤ u(r) for all arcs r ∈ R (we also allow u(r) = +∞).

The residual network Gf = (V ,Rf , α
′, ω′) has the same node set as G.

The set of arcs is defined as follows:

• If r ∈ R and f (r) < u(r), Gf contains an arc +r with α′(+r) = α(r)

and ω′(+r) = ω(r) and residual capacity uf (+r) := u(r)− f (r).

• If r ∈ R and f (r) > l(r), Gf contains an arc −r with α′(−r) = ω(r)

and ω′(−r) = α(r) and residual capacity uf (−r) := f (r)− l(r).

76

Residual networks and flow augmenting paths

Example 4.15
→ board.

Remark 4.16
We have introduced the “signs” for the arcs in Gf in order to make clear

that these arrows are in the residual network. On the other hand, for

example −r emphasizes that this arc is an “flipped” version of r .

In the following we are using σ as a place holder for the sign, thus every

arc in Gf can be wri�en as σr for all r ∈ R.

We denote by −σr the inverse arc, thus −r for +r and vice versa.

77

Residual networks and flow augmenting paths

Definition 4.17 (Flow augmenting paths)
A path P from s to t in Gf is called flow augmenting path for the flow f .

The residual capacity
∆(P) := min

σr∈P
uf (σr)

of P is the minimum of the residual capacities of its arcs.

Example 4.18
→ board.

Observation 4.19

If there exists a flow augmenting path for some flow f , f cannot be a

maximum flow.

78

Notes

Notes

Notes

Residual networks and flow augmenting paths

In Lemma 4.11 we have shown that the capacity of an (s, t)-cut is an upper

bound for the flow value of every feasible (s, t)-flow. We re-formulate this

result with the help of residual networks.

Lemma 4.20
If f is a feasible (s, t)-flow and f ′ and maximum (s, t)-flow, it holds that

val(f ′) ≤ val(f) + uf (δ+
Gf

(S))

for every (s, t)-cut (S, T) in Gf .

Proof.
→ board.

79

The max-flow-min-cut theorem

Observation 4.19 yields a necessary condition for the maximality of some

flow f : there must not exist a flow augmenting path. We’re going to show

that this condition is also su�icient.

Let f ∗ be a maximum (s, t)-flow. According to Observation 4.19 there does

not exist an flow augmenting path for f ∗. This means, that t is not

reachable from s in Gf and the two sets

S :=
{

v ∈ V : v is reachable from s in Gf
}

T :=
{

v ∈ V : v is reachable from t in Gf
}

are non-empty.

Thus the two sets define a cut (S, T).

80

The max-flow-min-cut theorem

Let r ∈ δ+(S) be an arc in the forward part of the cut.

Then it holds that f ∗(r) = u(r), because otherwise +r would be an arc in

Gf ∗ and ω(r) would be reachable from s in Gf ∗ , in contradiction to

ω(r) ∈ T (we have v ∈ S and thus by definition of S the node v is

reachable from s in Gf ∗).

This shows that

f ∗
(
δ+(S)

)
= u

(
δ+(S)

)
. (3)

81

Notes

Notes

Notes

The max-flow-min-cut theorem

Similarly, for every arc r ∈ δ−(S) it must hold that f ∗(r) = 0, because

otherwise −r would be an arc in Gf ∗ and ω(r) as well as α(r) would be

reachable from s.

Thus it holds that

f ∗
(
δ−(S)

)
= 0. (4)

Combining (3) and (4) results in

u
(
δ+(S)

)
= f ∗

(
δ+(S)

)
− f ∗

(
δ−(S)

)
?
= val(f ∗),

where we used Lemma 4.8 at ?.

82

The max-flow-min-cut theorem

Because of Corollary 4.12 f ∗ is a maximum flow and at the same time

(S, T) is a minimum cut, that is a cut with minimum capacity.

This leads to the following, famous theorem by Ford and Fulkerson.

Theorem 4.21 (Max-flow-min-cut theorem)
In a directed graph G with capacities u : R→ R+ the value of a maximum
(s, t)-flow is equal to the capacity of a minimum (s, t)-cut:

max
f is a feasible (s, t)-flow in G

val(f) = min
(S,T) is an (s,t)-cut in G

u
(
δ+(S)

)
.

83

The max-flow-min-cut theorem

At the same time, we have proven the following theorem.

Theorem 4.22 (Augmenting path theorem)
A feasible (s, t)-flow f is a maximum flow if and only if there exists no flow
augmenting path, in other words, there exists no path from s to t in the
residual network Gf .

84

Notes

Notes

Notes

The algorithm of Ford and Fulkerson

Assumptions for this part
For the algorithmic part, we assume that G is connected and simple. The

assumption that G is simple eases the notation, but again is no

restriction: A bunch of parallel arcs r1, . . . , rk can be merged to one single

arc with capacity

∑k
i=1

u(rk).

Also the assumption of connectedness is not a limitation as we otherwise

solve the problem in the component that contains s and t (if no such

component exists, the maximum flow is obviously 0).

85

The algorithm of Ford and Fulkerson

Theorem 4.22 motivates an obvious idea for a simple algorithm to solve the

maximum flow problem.

We start with the zero flow f ≡ 0 and as long as there are paths from s to t
in Gf we augment f along such a path and update the residual network Gf .

If the capacities are integral, this means u : R→ N, Algorithm 9 augments

the flow in every step by an integer, since if the flow is integral, the

residual capacities are integral too.

Moreover, the flow is increased at least by 1 unit. Let

U := max{u(r) : r ∈ R}. The cut (s,V \ {s}) has at most n− 1 arcs with

capacity at most U. Thus the cut has capacity at most (n− 1)U.

86

The algorithm of Ford and Fulkerson

Algorithm 9: Generic algorithm based on flow augmenting paths

Ford-Fulkerson(G, u, s, t)

Input : A simple directed graph G = (V ,R), a non-negative capacity

function u : R→ R, two nodes s, t ∈ V .

Output: A maximum (s, t)-flow f (for a “clever” choice of flow augmenting

paths)

1 Set f (r) = 0 for all r ∈ R
2 while there exists a path from s to t in Gf do
3 Choose such a path P
4 Set ∆ := min{uf (σr) : σr ∈ P} // residual capacity of path P

5 Augment f along P by ∆ units

6 Update Gf

87

Notes

Notes

Notes

The algorithm of Ford and Fulkerson

Example 4.23
→ board.

Theorem 4.24
If all capacities are integral, Algorithm 9 terminates a�er O(nU)

augmenting steps and O ((m + n)nU) time with an integral maximum flow.
Here, U := max{u(r) : r ∈ R} denotes the maximum capacity in the graph.

Example 4.25
→ board.

Theorem 4.26 (Integrality theorem)
If all capacities are integral, there exists an integral maximum flow.

88

The algorithm of Ford and Fulkerson

Example 4.27
→ board.

Theorem 4.28
If all capacities are rational numbers, Algorithm 9 terminates a�er a finite
number of steps.

Proof.
→Multiply all capacities with the lowest common denominator K
solve problem with integral capacities and divide by K .

89

The algorithm of Ford and Fulkerson

Theorem 4.29
For irrational capacities, it may happen that Algorithm 9 does not terminate
a�er a finite number of steps and the “limit flow” (the limit of generated
flows) is not even a maximum flow.

Proof.
→ board.

90

Notes

Notes

Notes

It remains an open question in Algorithm 9 how to choose the flow

augmenting path. For the previous theoretical results, it su�iced to use

any flow augmenting path.

If the flow augmentation occurs along a shortest s-t-path in Gf in

Algorithm 9, this leads to the following algorithm by Edmonds and Karp.

91

The algorithm of Edmonds and Karp

Algorithm 10: Algorithm of Edmonds and Karp

Edmonds-Karp-Maxflow(G, u, s, t)

Input : A simple directed graph G = (V ,R), a non-negative capacity

function u : R→ R, two nodes s, t ∈ V .

Output: A maximum (s, t)-flow f .

1 Set f (r) = 0 for all r ∈ R
2 while there exists a path from s to t in Gf do
3 Choose such a shortest path P
4 Set ∆ := min{uf (σr) : σr ∈ P} // residual capacity of path P

5 Augment f along P by ∆ units

6 Update Gf

92

The algorithm of Edmonds and Karp

Lemma 4.30
Let G = (V ,R) be a directed graph. We again denote by dist(s, t,G) the
length of a shortest path from s to t in G and by Rst(G) the set of all arcs of
G, that are part of shortest s-t-paths. Let Rst(G)−1 := {r−1 : r ∈ Rst(G)},
where r−1 denotes the inverse arc of r.

Then it holds for the graph G′, that emerges from adding all arcs from
Rst(G)−1 to G:

dist(s, t,G′) = dist(s, t,G)

Rst(G′) = Rst(G)

Proof.
→ board.

93

Notes

Notes

Notes

The algorithm of Edmonds and Karp

Theorem 4.31
Let G be a network with integer, rational or real capacities. The algorithm of
Edmonds and Karp terminates a�er O(nm) iterations with a maximum
flow. The overall complexity of the algorithm is O (nm2).

Proof.
→ board.

94

Lower bounds and b-flows

In some applications it makes sense to introduce additional lower bounds

l : R→ R+ in addition to the upper bounds u : R→ R+ on every arc r ∈ R.

Finding a maximum flow in this context means to find a maximum flow

that also obeys the condition l(r) ≤ f (r) ≤ u(r) on every arc in G.

Assumption
Let G = (V ,R, α, ω) be a finite directed graph, l : R→ R+ be a function

that assigns a lower bound on the capacities to every arc r ∈ R and

u : R→ R+ be a function that assigns an upper bound on the capacities

to every arc r ∈ R with 0 ≤ l(r) ≤ u(r) for all r ∈ R.

Does such a flow always exist?

95

Lower bounds and b-flows

Example 4.32
→ board.

We have defined the excess of a node v ∈ V as

excessf (v) := f
(
δ−(v)

)
− f

(
δ+(v)

)
for some flow function f .

For an (s, t)-flow we required the flow to obey the flow conservation

constraint excessf (v) = 0 for all v ∈ V \ {s, t}. Thus it holds

excessf (v) =


− val(f) if v = s

val(f) if v = t

0 else

.

96

Notes

Notes

Notes

Lower bounds and b-flows

Definition 4.33 (b-flow, circulation)
Let b : V → R be a node labeling. A function f : R→ R is called b-flow in

G if

excessf (v) = b(v) for all v ∈ V .

For the special case b(v) = 0 for all nodes v ∈ V , we call this 0-flow a

circulation.

If l and u are capacity bounds as in the previous assumption, we say a

b-flow f or a circulation β is feasible if l(r) ≤ f (r), β(r) ≤ u(r) for all

r ∈ R.

97

Lower bounds and b-flows

Remark 4.34
Every (s, t)-flow is a b-flow with b(s) = − val(f), b(t) = val(t) and

b(v) = 0 for all v ∈ V \ {s, t}.

Furthermore, every function h : R→ R+ is a b-flow for

b(v) := excessh(v).

A necessary condition for the existence of a b-flow is

∑
v∈V b(v) = 0, since

for every function f : R→ R+ it holds that

∑
v∈V excessf (v) = 0.

Since every circulation β in G is an (s, t)-flow for an arbitrary choice of

s, t ∈ V with flow value val(β) = 0, Lemma 4.8 yields the following

corollary:

Corollary 4.35
For a circulation β in G and an (S, T) cut it holds that

β
(
δ+(v)

)
= β

(
δ−(v)

)
.

98

Lower bounds and b-flows

We have seen that a flow with lower and upper bound does not necessarily

exist. How can we decide whether such a flow exists, and, if one exists,

calculate a feasible b-flow?

Let G = (V ,R, α, ω) be a directed graph with lower and upper bound

l, u : R→ R+. We construct a super graph G′ = (V ′,R′, α′, ω′) in the

following way: we add two new nodes s′ and t ′ to this graph.

There exists one arc from s′ to every node v ∈ V and one arc from every

v ∈ V to the new node t ′.

V ′ = V ∪ {s′, t ′}
R′ = R ∪ {(s′, v) : v ∈ V} ∪ {(v, t ′) : v ∈ V}

99

Notes

Notes

Notes

Lower bounds and b-flows

We set the lower bound l′(r ′) := 0 for all arcs r ′ ∈ R′ and define the upper

bound as follows:

u′(r) := u(r)− l(r) for all r ∈ R

u′(s′, v) :=
∑

r∈δ−(v)

l(r) = l
(
δ−(v)

)
for all v ∈ V , “minimum inflow”

u′(v, t ′) :=
∑

r∈δ+(v)

l(r) = l
(
δ+(v)

)
for all v ∈ V , “minimum ouflow”

For a node v ∈ V we denote by δ+(v) the arcs emanating from v in G and

by δ+
G′(v) = δ+(v) ∪ {(v, t ′)} the corresponding arcs in G′. We also use the

corresponding notion of δ−(v) for the incoming arcs.

100

Lower bounds and b-flows

Lemma 4.36
Let f : R→ R be an arbitrary function. Then it holds for every function
f ′ : R′ → R with the property

f ′(r) = f (r)− l(r) for all r ∈ R

f ′(r ′) = u′(r ′) for all r ′ ∈ R′ \ R

that f ′(δ+
G′(v)) = f (δ+(v)) and f ′(δ−G′(v)) = f (δ−(v)) for all v ∈ V.

Proof.
→ board.

101

Lower bounds and b-flows

Theorem 4.37
The exists a feasible circulation in G with respect to the lower and upper
bounds l and u if and only if the maximum (s′, t ′)-flow in G′ has the value
F :=

∑
r∈R l(r).

Proof.
→ board.

Corollary 4.38
Let G be as in the previous assumption. By computing a maximum flow we
either compute a feasible circulation with respect to the lower and upper
bounds l and u in G or determine that no such circulation exists.

If such a circulation exists and l and u are integral, the so found circulation
is integral too.

102

Notes

Notes

Notes

Flow decomposition

Definition 4.39 (Path flow, circulation)
A path flow f along a simple path P in G (with flow value δ > 0) is an

(α(P), ω(P))-flow that vanishes on all arcs r /∈ R(P), that is so to say

f (r) =

{
δ if r ∈ R(P)

0 otherwise.

Analogously we define a circulation β along an elementary cycle C in G
as

β(r) =

{
δ if r ∈ R(C)

0 otherwise.

103

Flow decomposition

Let P be the set of all simple paths in G that are no cycles and C be the set

of all elementary cycles in G.

If fP for some P ∈ P is a path flow and βC for some C ∈ C is a circulation,

we can construct an arc label f by

f (r) :=
∑
r∈P
P∈P

fP (r) +
∑
r∈C
C∈C

βC(r).

It follows, that for all v ∈ V

excessf (v) =
∑
P∈P

excessfP (v)

holds. This allows us to construct a b-flow from path flows and

circulations.

The following theorem shows that the opposite is also true.

104

Flow decomposition

Theorem 4.40 (Flow decomposition theorem)
Every b-flow f : R→ R+ can be expressed as the sum of m + n path flows
and circulations with the following properties:

1. For every path flow fP P is a path from a node v with b(v) < 0 to a node
u with b(u) > 0.

2. In the linear combination there occur at most m circulations.

If f is integral, all path flows and circulations are also integral.

Proof.
→ board.

Example 4.41
→ board.

105

Notes

Notes

Notes

Flow decomposition

Remark 4.42
The method described in the proof of Theorem 4.40 can be implemented

with a worst-case time complexity of O ((n + m)2). A path or a cycle can

be found inO(m + n) time and there occur at most n + m path flows and

cycles.

Remark 4.43
The result further shows that O(n + m) flow augmenting paths are

su�icient to construct a maximum flow. This is substantially less than

the bound of O(nm) iterations in the algorithm of Edmonds and Karp.

However, it is not clear how to turn this into an e�icient algorithm, since

we already assumed both the knowledge of a maximum flow and that of

a flow decomposition.

106

Min cost flows

Assumption for this part
In the following let G = (V ,R, α, ω) be a finite graph and l, u be

functions that assign a lower and upper capacities to the arcs of G, where

it holds that 0 ≤ l(r) ≤ u(r) for all r ∈ R. We also allow the case

u(r) = +∞ for r ∈ R. Let b : V → R be a function that assigns the

desired excess to the nodes. Additionally, let c : R→ R be a function that

assigns flow costs to the arcs.

Definition 4.44 (Flow cost)
Let c : R→ R be an arc labeling that we call cost function. For some

b-flow f the flow costs are given by

c(f) :=
∑
r∈R

c(r) · f (r).

We extend the cost function c on the arcs in the residual network by

c(+r) := c(r) and c(−r) := −c(r).

107

Min cost flows

Min cost flow problem
For a given graph G with capacities l, u : R→ R+, excess values

b : V → R and flow costs c : R→ R, the problem of finding a feasible

b-flow with minimum flow cost c(f) is called min cost flow problem.

108

Notes

Notes

Notes

Min cost flows

Remark 4.45
In principle, we also allow negative values for the costs on the arcs r ∈ R.

Additionally, we allow infinite upper flow bounds on the arcs. This allows

us to model the maximum flow problem as a special instance of a min

cost flow problem.

Let G be a directed graph with lower and upper flow bounds l and u such

that 0 ≤ l(r) ≤ u(r) for all r ∈ R and s, t ∈ V be the two nodes for those

we want to compute a maximum (s, t)-flow. We extend G to G′ by adding

a new arc rts from t to s with cost c(rts) := −1 and capacities l(rts = 0) and

u(rts) = +∞. For all other arcs r ∈ R, we set c(r) = 0, for all nodes v ∈ V
we set b(v) = 0.

An (s, t)-flow f in G with val(f) = F exists if and only if G′ contains a cost

minimal b-flow with cost −F .

109

Min cost flows

For the calculation of maximum flows, we augmented an (s, t)-flow along

a flow augmenting path P (that is a path in the residual network) by a

value of δ > 0.For all arcs +r ∈ P we augmented the flow value by δ, for

all arcs −r ∈ P we reduced the flow value by δ.

For min cost flows we additionally need the augmentation of a b-flow

along a cycle in Gf . Analogously we augment the flow along all arcs

+r ∈ C and reduce the flow along all arcs −r ∈ C. Obviously, the excess

remains unchanged in all vertices.

110

Min cost flows

Let f be a b-flow and βC be a circulation in Gf along an elementary cycle

C = (v0, σ1r1, v1, . . . , σkrk , vk = v0) in Gf with flow value δ > 0.

Then f + βC , defined by

(f + βC) (r) :=


f (r) + δ if r = ri and σi = +

f (r)− δ if r = ri and σi = −
f (r) otherwise

,

is again a b flow in G. The costs c (f + βC) are given by c(f) + c(βC).

With this notion we can formulate and proof the following theorem:

111

Notes

Notes

Notes

Min cost flows

Theorem 4.46
Let f and f ′ be feasible b-flows in G with respect to l and u. f ′ can be
wri�en as the sum of f and at most 2m circulations βC1

, . . . , βCp in Gf . It
holds that c(f ′) = c(f) +

∑p
i=1

c(βCi).

Proof.
→ board.

Theorem 4.47 (Cycle criterion for cost minimal b-flow)
Let G be as in the assumption for this part. f is a cost minimal b-flow if and
only if the residual network Gf does not contain a cycle of negative length
with respect to the cost function c.

Proof.
→ board.

112

Min cost flows

Additional assumptions for the algorithmic part
In addition to the previous assumptions we demand the following three

properties for the network flow problem:

1. There exists a feasible b-flow with respect to l and u in G. In

particular, this means that

∑
v∈V b(v) = 0.

2. For all u, v ∈ V with u 6= v there exists a path from u to v in G that

consists only of arcs with infinite capacity (therefore, this path also

exist in Gf for an arbitrary f : R→ R+).

3. It is l(r) = 0 and c(r) ≥ 0 for all r ∈ R.

None of these points is a loss of generality. In 1. we ensure that a feasible

solution exists. This can be tested by the calculation of a maximum flow.

2. can be enforced by adding new arcs with infinite costs. None of these

will be used in an optimal solution.

113

Min cost flows

Theorem 4.47 motivates the following algorithm by Klein to compute min

cost flows.

Algorithm 11: Algorithm of Klein to compute min cost flows

MinCostFlow-Klein(G, l, u, b, c)

Input : A simple directed graph G = (V ,R, α, ω) with capacity functions

0 ≤ l(r) ≤ u(r) for all r ∈ R, desired excess values b : V → R and

flow costs c : R→ R+.

Output: A minimum cost b-flow f . If l, u and c are integral, so is f .

1 Compute a feasible b-flow f // Can be done by computing a maximum flow

2 while the residual network Gf contains a negative cycle C do
3 Let ∆ := minσr∈C c(σr) be the minimal residual capacity along C
4 Augment f along C by ∆ // Eliminate the negative cycle C

5 return f

114

Notes

Notes

Notes

Min cost flows

Example 4.48
→ board

Theorem 4.49
If all excesses b, capacities u and costs c are integral, the algorithm of Klein
terminates a�er O(mUC) iterations with an integral min cost b-flow. Here
we denote by U := max{u(r) : r ∈ R} the maximum capacity and by
C := max{c(r) : r ∈ R} the maximum cost value in G.

Proof.
→ board.

Corollary 4.50 (Integrality theorem for min cost flows)
If all input data are integral, there exists an integral min cost b-flow.

115

Min cost flows

Remark 4.51
Algorithm 11 does not specify how to find an initial start flow and how

to find cycles with negative length in the residual network. One can

show that cycles C with minimum average weight c(C)/|C| lead to

polynomial-time algorithms.

116

Min cost flows

Theorem 4.52 (Potential criterion for min cost b-flows)
Let G be as in the assumptions. f is a min cost b-flow if and only if there
exists a potential in Gf with respect to the weights c. That means there exits
a function p : V → R with p(v) ≤ c(σr) + p(u) for all σr ∈ Gf with
u = α(σr) and v = ω(σr).

Proof.
→ board.

An equivalent formulation can be stated with reduced costs.

Corollary 4.53 (Reduced cost criterion for min cost b-flows)
Let G be as in the assumptions. f is a min cost b-flow if and only if there
exists a node labeling p : V → R with cp(σr) ≥ 0 for all σr ∈ Gf .

117

Notes

Notes

Notes

Min cost flows

Definition 4.54 (Pseudo flow)
Let G be as in the assumptions and l ≡ 0. A feasible pseudo flow in G is a

function f : R→ R with 0 ≤ f (r) ≤ u(r) for all r ∈ R.

For a pseudo flow we define the imbalance of a node v ∈ V by

imbalf (v) := excessf (v)− b(v).

If imbalf (v) > 0 we call v a surplus node. If imbalf (v) < 0 we call v a

deficit node. A node v ∈ V with imbalf (v) = 0 is called satisfied.

118

Min cost flows

For a pseudo flow f we denote by Sf and Df the set of surplus or deficit

nodes. It is ∑
v∈V

imbalf (v) =
∑
v∈V

excessf (v)︸ ︷︷ ︸
=0 (Lemma)

−
∑
v∈V

b(v)︸ ︷︷ ︸
=0 by assumption

= 0,

therfore ∑
v∈Sf

imbalf (v) = −
∑
v∈Df

imbalf (v). (5)

(5) yields the following handy observation.

119

Min cost flows

Observation 4.55
For a pseudo flow f , the set of surplus nodes Sf is empty if and only if

the set of deficit nodes Df is empty.

120

Notes

Notes

Notes

Min cost flows

Algorithm 12: Successive shortest path algorithm

Successive-Shortest-Path(G, u, b, c)

Input : A directed graph as in the assumptions.

Output: A minimum cost b-flow f . If l, u and c are integral, so is f .

1 Set f (r) := 0 for all r ∈ R and p(v) := 0 for all v ∈ V
2 Set imbalf (v) := −b(v) for all v ∈ V
3 Compute the set of surplus and deficit nodes

Sf =
{

v ∈ V : imbalf (v) > 0

}
Df =

{
v ∈ V : imbalf (v) < 0

}
4 while Sf 6= ∅ do
5 Choose a node s ∈ Sf and a node t ∈ Df

6 Compute the distances d(v) = distcp (s, f ,Gf) from s to all other nodes in Gf

with respect to the reduced costs cp

7 Let P be a shortest s-t-path

8 Set ∆ := min{uf (σr) : σr ∈ P}
9 Update p := p + d

10 ε := min{imbalf (s),− imbalf (t),∆}
11 Augment f along P by ∆

12 Update f ,Gf , Sf and Df

13 return f
121

Min cost flows

122

Dynamic network flow problems

Outline

5. Dynamic network flow problems

5.1 Maximum flows over time

5.2 Earliest arrival flows

5.3 Minimum cost flows over time

5.4 �ickest flows

123

Notes

Notes

Notes

This section is still under

construction.

124

Notes

Notes

Notes

	Introduction: Definitions and Examples
	Graphs
	Path
	Connectedness, Cuts and Trees

	Minimum Spanning Tree Problem
	Kruskal's Algorithm
	Algorithm of Prim
	IP Formulation

	Shortest Path Problems
	Shortest Path Problem
	Shortest path problem with negative costs
	The all-pair shortest path problem

	Network flow problems
	Flows and cuts
	Residual networks and flow augmenting paths
	The max-flow-min-cut theorem
	The algorithm of Ford and Fulkerson
	The algorithm of Edmonds and Karp
	Lower bounds and b-flows
	Flow decomposition
	Min cost flows

	Dynamic network flow problems
	Maximum flows over time
	Earliest arrival flows
	Minimum cost flows over time
	Quickest flows

