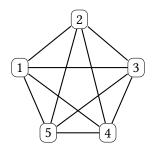
Linear and Network Optimization • Summer term 2018 EXERCISE SHEET 6 To be done in the tutorials on 28.05.2018 & 01.06.2018

Lecture: Dr. David Willems Exercises: Florian Gensheimer Download this sheet at http://uni-ko-ld.de/n5

IN-CLASS EXERCISES


(To be done in the tutorials on 28.05.2018 & 01.06.2018)

Exercise 6.1

Let G = (V, E) be a graph with no double edges and $B \in \mathbb{R}^{|V| \times |E|}$ its incidence matrix. Which meaning do the entries of the matrix product BB^{\top} have, where B^{\top} denotes the transposed matrix of B?

Exercise 6.2

Consider the following graph:

- a) Determine the adjacency matrix **A** and the incidence matrix **B** to this graph.
- b) Compute the product $\mathbf{A} \cdot \mathbf{A} =: \mathbf{A}^2$ of the adjacency matrix. Which meaning do the entries of this matrix have?

Exercise 6.3

Prove the following statement:

Let $G = (V, R, \alpha, \omega)$ be a finite directed graph. Then it holds that the number of vertices with odd degree is even.

Exercise 6.4

Let $G = (V, R, \alpha, \omega)$ be a directed graph. To every edge $r \in R$, we define the inverse edge r^{-1} via

$$\alpha(\mathbf{r}^{-1}) := \omega(\mathbf{r}) \text{ and } \omega(\mathbf{r}^{-1}) := \alpha(\mathbf{r}).$$

In this exercise, we use adjacency matrices for storing graphs. Find an algorithm that gets G as an input and computes G^{-1} . Determine the runtime of your algorithm.

Exercise 6.5

Let the adjacency matrix A to a directed graph G be given and let $v \in V$. Find an algorithm that computes the outer degree of v.