Automated data-driven damage detection
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Starting point:

e Simulation of GUW In FML can be achieved with MOR, but 3D e ey P
models are complex and synthetic sensor data Is oversimplified  Actuater Sensor Data Damage?

e Detection of damages with data-driven Machine Learning (ML) oalle.
and Bayesian Inversion (BI) possible with enough data variance Vi model-driven || ~Model- || data-driven

R - assisted model-free
and computing power Guided
: : Waves Damage

e Detection methods based purely on experimental data lack simulation || augmented || measureme

generalisation and independence from environmental change SensorData|  gata data nt data

Research hypothesis:

e Real-world measurements contain noise, errors, uncertainties, and have limited variance (sparse state space), but
can be augmented with numerically generated and simulated data.

e Three different methodical approaches: model-driven, model-assisted, and model-free; using three different types of
data: simulation, augmented and measured data — broader perspective for damage detection

e A joint framework shall fuse the methods to exploit the respective advantages and this allows to detect damages
more accurately than utilising only one approach.”

Methods

e Data assimilation
o damage parameter estimation using Bayesian inversion and PEEE S __
data assimilation approaches for nonlinear, 3D problems ff
* PINNs e T = - .
o compact solution of model equations and later joint damage
parameter identification using PINN
e Hybrid Data-driven Methods ML
o Investigate methods to distribute and partition damage
diagnostics, fuse local weak indicators globally or in spatial e
regions to strong indicators, emphasize embedded systems -k
o damage detection, characterisation, and classification in 3D X-
ray tomography and US scan data: automated damage
characterization in CT data, optimization of CT measuring
processes
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Expected results |
e Data assimilation for damage detection using MOR
e Damage detection using PINNs posing low computational complexity o~ | T [ e
e Synthetic sensor data augmentation using model-driven support I ‘ o) | Vanimowwertss || righamowess | | ‘wer
e Low-resource distributed damage prediction in sensor networks T Experiment /
(hierarchical and hybrid multi-model methods) 3
e Fused framework for accurate, generalised, and robust damage C)
detection independent from environmental changes

Added value for the research unit

e Analysis of possibilities and limitations of damage e Implementation of the methods In embedded systems
identification using data-driven computational and e Perspective: indications for suitable sensor locations
mathematical methods e Automated model and damage parameter space

e Analyse trade-off between practicability and accuracy exploration
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