
An Efficient Vector Median Filter Computation

V. Hong1, L. Csink2, S. Bouattour1, D. Paulus1

1 Institut für Computervisualistik, Universität Koblenz-Landau, Universitätsstr. 1,
56070 Koblenz – Germany, {hong,bouattour,paulus}@uni-koblenz.de

2 John von Neumann Faculty of Informatics, Budapest Polytechnic, H1037
Budapest, Nagyszombat 19 – Hungary, csink.laszlo@nik.bmf.hu

Abstract. The vector median filter(VMF) is a useful and common tool
for noise removal in color image processing[HPP04,PV00,AHN90]. The
drawback of the approach in its general form is the high computational
cost. Indeed it takes O(n×m×ms4) distance evaluations for computing
the filter response, where ms ist the mask size and n×m the dimension
of the image. In this contribution we propose a general algorithmic op-
timization framework for reducing the complexity to O(n × m × ms3).
We discuss the dependency of the VMF on the distance measure and
demonstrate that for the square Euclidian distance, the VMF becomes a
vector near-mean filter with just O(n × m × ms2) distance evaluations.

1 Introduction

By definition the VMF of an n × m RGB image f is computed as follows: Go
through the image with a square mask W of size ms×ms. The VMF g of f at
the center of the mask (i, j) is

gi,j = f(iMin, jMin) (1)

where (iMin, jMin) is the position of the pixel with the minimal distance sum
to all other pixels within the mask:

RiMin,jMin
= min

(µ,ν)∈W
Rµ,ν (2)

where
Rµ,ν =

∑

(k,l)∈W

Distance(fµ,ν , fk,l) . (3)

and Distance is the distance function between two pixels.
According to this definition, a mask of size ms × ms is applied to each

pixel in the image of size n × m. For each pixel within the mask the distance
between this pixel to all other pixels in the mask have to be computed. This
costs O(ms × ms) evaluations. This has to be repeated ms2 times within the
mask and over the whole image. VMF’s computation needs thus O(n×m×ms4)
distance evaluations. This high computational cost is the main drawback of the
VMF, especially when it is applied to real time applications.



In the following we discuss two approaches to reduce the computational com-
plexity. In section 2 we propose a general algorithmic framework for reducing
the number of evaluations by preserving the computations performed in one po-
sition and using it in the following one. This leads to a reduction of the order
of O(n × m × ms3). In section 3 we discuss the dependency of VMF on a spe-
cial distance measure: the square Euclidian distance, and demonstrate that the
minimium of Eq. 2 can be computed analytically. This yields a smoothing filter
which is actually the best approximation of the mean filter. We call this the
vector near-mean filter. Section 4 summarizes the paper and describes future
work.

2 Algorithmic Optimization

The most expensive part of the original VMF is the computation of the pixel
distances. For each mask applying the distances between each pixel in the mask
and its neighbours are computed completely new, although most of the distances
are already computed before. In our approach we reduce the number of pixel
distance computations by reusing computed distances between pixels and those
neighbours. We introduce a distance matrix and a distance cube.

While applying masks, we go through the image columnwise from left to
right. Furthermore we ignore border cases.

2.1 Distance Matrix

To reduce the frequency of the expensive distance computation between pixels
we introduce a symmetric matrix D = [D(i, j, k, l)]i,j,k,l=0,...,ms−1. In this matrix
the distances between pixels in a mask are stored. The pixel distances computed
in this matrix can be reused for several mask operations. A matrix element
D(i, j, k, l) represents the distance between the pixels at mask position (i, j)
and (k, l). The distance between two pixels is direction independent, that means
D(i, j, k, l) = D(k, l, i, j) is valid for all pixels in the mask. To increase the
reuseability of this matrix we make a difference between horizontal and vertical
pixelwise moving of the mask.

Initialization When the mask is applied on the image for the first time the
distance matrix has to be completely computed. The complete computation of
the mask is done only once. This process is divided up into two parts, determine
the distances between pixels being in the same and different rows. In Fig. 1 the
calculation of the distances between pixels at the same row in the mask are
presented. The computational time of this step is O(ms3).

In Fig. 2 the calculation of the distances between pixels at different rows
in the mask are shown. We iterate through each row in the mask from top to
bottom and compute foreach pixel the distance to each neighbours on the lower
rows. The computational time of this step is O(ms4).



∀ i = 1..ms // Iterate through each row

∀ j = 1..ms − 1 // Iterate through columns

∀ l = j + 1..ms // Iterate through columns

D(i, j, i, l) = Distance(f(i, j), f(i, l));

D(i, l, i, j) = D(i, j, i, l); // Symmetrical case

Fig. 1. Computation of distances between pixels at the same row

∀ i = 1..ms − 1 // Iterate through rows

∀ j = 1..ms − 1 // Iterate through columns

∀ k = i + 1..ms // Iterate through rows

∀ l = 1..ms // Iterate through columns

D(i, j, k, l) = Distance(f(i, j), f(k, l));

D(k, l, i, j) = D(i, j, k, l); // Symmetrical case

Fig. 2. Computation of distances between pixels at the different rows

Horizontal moving After scanning an image along a column j we continue
the scanning with the next right column j + 1 from the top. Originally we have
to compute the whole distance matrix at the beginning of a new column. But
luckily, we can reduce the costs of building this matrix. Before scanning an image
vertical we compute recursively the distance matrices for each starting column
from left to right and store these results. If we move the mask from a starting
column to the next, most of the already determined distances in the previous
distance matrix can be reused. We cannot reuse the distance for the pixels at
the left mask side of the previous mask, because these pixels are no more in the
current mask. The other distances can be reused in the way that the column
index of the elements in previous matrix are increased by 1(see Fig. 3). Finally
we have to compute for each pixel at the right mask side the distances to its
neighbours(see Fig. 4).

The computation cost of Fig. 3 is O(ms4).

∀ i = 1..ms // Iterate through each row

∀ j = 1..ms − 1 // Iterate through columns

∀ k = 1..ms // Iterate through rows

∀ l = 1..ms − 1 // Iterate through columns

DNew(i, j, k, l) = D(i, j + 1, k, l + 1)

Fig. 3. Reusing the distance information of the previous distance matrix – horizontal
moving



The computation cost of Fig. 4 is O(ms4). Here sMCol is an auxiliary variable
keeping track of the column position to start from.

∀ i = 1..ms // Iterate through rows

∀ k = 1..ms // Iterate through rows

∀ l = 1..ms // Iterate through columns

D(i, ms, k, l) = Distance(f(i, ms + sMCol − 1), f(k, l + sMCol − 1));

D(k, l, i, ms) = D(i, ms, k, l); // Symmetrical case

Fig. 4. Computation of the distances between pixels in the last row mask and its
neighbours – horizontal moving

Vertical Moving For the vertical moving of the mask the approach is very
similar to the horizontal moving. We can keep most of the distance information
of the previous computed matrix (see Fig. 5). Only for the pixels in the last row
of the mask the distances to its neighbours must be computed(see Fig. 6).

The computation cost of Fig. 5 is O(ms4).

∀ i = 1..ms − 1 // Iterate through each row

∀ k = 1..ms − 1 // Iterate through columns

∀ j = 1..ms // Iterate through rows

∀ l = 1..ms − 1 // Iterate through columns

DNew(i, j, k, l) = D(i + 1, j, k + 1, l)

Fig. 5. Reusing the distance information of the previous distance matrix – vertical
moving

The computation cost of Fig. 6 is O(ms2). Here sMRow and sMCol are aux-
iliary variables keeping track of the row and column positions, respectively, to
start from.

2.2 E-Cube

In the standard VMFD we have to compute for each pixel in the mask the sum
of the row distances between this pixel and its neighbours in the corresponding
mask row. In general, the computed row distances can be used many times again.
For this purpose we introduce the E-Cubethat is a matrix of the dimension ms3.
Each element E(i, j, s) represents the distance between the element (i, j) in the
mask to all its neighbours in the mask row s.



∀ j = 1..ms − 1 // Iterate through rows

∀ l = j + 1..ms // Iterate through columns

D(ms, j, ms, l) = Distance(f(ms + sMRow − 1, j + sMCol − 1), f(ms + sMRow − 1, l +
sMCol − 1));

D(ms, l, ms, j) = D(ms, j, ms, l); // Symmetrical case

Fig. 6. Computation of the distances between pixels in the last row mask and its
neighbours – vertical moving

Initialization For each element in the row i and column j the distance E(i, j, k)
to all its neighbours in the row k is computed by using the distances matrix (see
Fig. 7).

∀ s = 1..ms // Iterate through each slice

∀ i = 1..ms // Iterate through rows

∀ j = 1..ms // Iterate through columns

∀ l = 1..ms // Iterate through columns

E(i, j, s) = E(i, j, s) + D(s, j, i, l)

Fig. 7. Initialization of the E-Cube

Horizontal Moving If the mask is shifted to the next vertical position, then
most of the computed distances in the E-Cube can be reused in the following
way. All elements in the E-Cube are moved in the way that the column index
is decreased by one. The value of each element ENew(i, j, s) must be updated
in two steps. First, the distance between the pixel (s, j) and (i, 1) is removed,
because the pixel (i, 1) is no longer valid. Second, the distance between the pixel
(s, j) and (i, ms) is added, because the pixel (i, ms) is new in the mask.

Additionally, for each pixel in the right column the distances pixels have to
be computed new.

In Fig. 8 is the algorithm of the horizontal shifting described.

Vertical Moving The vertical shifting of the E-Cube is analogous to the hori-
zontal shifting in 2.2.

2.3 Main Algorithm

In Fig. strukto:mainAlgo is the main algorithm of our approach presented. This
algorithm consists of the following parts, the initialization and the columnwise
scanning of the image from left to right.



∀ s = 1..ms // Iterate through each slice

∀ i = 1..ms // Iterate through each row

∀ j = 1..ms − 1 // Iterate through columns

ENew(i, j, s) = E(i, j + 1, s) − DOld(s, j + 1, i, 1) + D(s, j, i, ms)
// Remove old distance between current pixel and left pixel in previous (left) mask
// Add distance between current pixel and right pixel in current mask

∀ l = 1..ms // Iterate through columns

ENew(i, ms, s) = E(i, j + 1, s) + D(s, ms, i, l)
// Compute the right pixel in current row new

Fig. 8. Horizontal Shifting of the E-Cube

∀ j = 1..ms // Iterate through each col

∀ l = 1..ms // Iterate through each col

∀ s = 2..ms // Iterate through slices

∀ j = 1..ms // Iterate through each col

∀ i = 1..ms // Iterate through rows

ENew(i, j, s − 1) = E(i, l, s)
// Compute the rows 1:maskSize of the slices 1:maskSize-1

ENew(ms, j, s − 1) = ENew(ms, j, s − 1) + D(s − 1, j, ms, l)
// Compute the last row of the slices 1:maskSize-1

∀ i = 1..ms // Iterate through rows

ENew(i, j, ms) = E(i, j, s) + D(ms, j, i, l) // Compute the last layer

Fig. 9. Vertical Shifting of the E-Cube

In the initialization step the mask starts at the position (startRow, startCol).
The distance matrix and the E-Cubeare created (see sect. 2.1 and 2.2) and stored
in the auxiliary lists DInits resp. CubeList. After this step the mask is moved
horizontal from left to right. For each mask moving the distance matrix and
E-Cubeare updated by using the horizontal moving algorithm (see sect. 2.1 and
2.2). The results are appended to the lists DInits resp. CubeList.

After the initialization the mask is moved to the position (startRow, startCol).
Then the image is scanned columnwise. For each new column the distance ma-
trix and E-Cubeare recomputed by using the corresponding element of the lists
DInits resp. CubeList. For each column the new value of the applied pixel is
computed in the computeMinP ixel function using current distance matrix and
E-Cube. After each pixel apply the distance matrix and E-Cubeare updated by
using the in sect. 2.1 and 2.2 presented algorithms.

computeMinP ixel This function returns the pixel in the mask with minimal
distance to all its neighbours by using the e-cube.



sMCol = 1

startCol = (ms + 1)/2

endOfColLoop = cols − (ms − 1)/2

startRow = (ms + 1)/2

endOfRowLoop = rows − (ms − 1)/2

stripeSize = endOfColLoop − startCol + 1

DInits[1] = createDistMatrix(ms,f) // Create first distance matrix

CubeList[1] = createECube(ms,f) // Create first e-cube

∀ i = 2..stripeSize // Iterate through the stripes

// Compute recursive the other distance matrices
DInits[i] = shiftHorDistMatrix(i + sMCol − 1, ms,D, f)

// Compute recursive the other e cubes
CubeList[i] = shiftHorECube(i + sMCol − 1, ms,DInits[i − 1], DInits[i], f)

∀ s = 1..ms // Iterate through each slice

∀ i = 1..ms // Iterate through rows

∀ j = 1..ms // Iterate through columns

∀ l = 1..ms // Iterate through columns

E(i, j, s) = E(i, j, s) + D(s, j, i, l)

∀ j = 1..endOfColLoop // Iterate through the stripes

sMRow = 1

sMRow = 1

g(startRow, j) = computeMinP ixel(sMRow, sMCol, E(, , ms, , )f) // Compute new pixel

∀ i = 1 + startRow..endOfRowLoop // Iterate through the rows of the stripe

sMRow + +

DInits[j] = updateDistMatrix(sMRow, sMCol, DInits[j], ms, f)

DInits[j] = updateECube(sMRow, sMCol, CubeList[j], ms, f)

g(startRow, j) = computeMinP ixel(sMRow, sMCol, E(, , ms, , )f)
// Compute new pixel

sMCol + +

Fig. 10. Main Algorithm

3 Analytic Optimization

When the VMF is applied on one-dimensional pixel values, the computation of
the distances over each two pixels becomes unnecessary since it can be shown
that the median of the mask is the solution of the optimization problem of
equation 2. It has to be emphasized that this is fulfilled, only if the the absolute
values of differences between each pixel pair is the used distance measure in
equation 3.

For color images, pixel values are three-dimensional vectors. The application
of the median rule is no more valid. In the following we will demonstrate that
even in this case we can solve the optimization problem analytically under the
assumption of a special distance measure: the square Euclidian distances.

The equation to be minimized in the case of square Euclidian distance is:

Rµ,ν =
∑

k,l∈W

‖fµ,ν − fk,l‖
2
. (4)



The minimum can be computed by finding the vector that sets the first deriva-
tive with respect to fµ,ν to zero:

dRµ,ν

fµ,ν
=

∑
k,l∈W 2(fµ,ν − fk,l)

!
= 0 (5)

=⇒ ms2f̂µ,ν −
∑

k,l∈W

fk,l = 0

=⇒ f̂µ,ν =
1

ms2

∑

k,l∈W

fk,l (6)

Eq. 6 shows that the vector that minimizes Eq. 2 for the square Euclidian dis-
tance is the mean vector within the mask. As the mean value can have values
which are not existent in the image, the best approximation is the vector which
has the smallest square Euclidian distance to the mean vector in the mask. In
this case the number of evaluations of the distance measure over the whole im-
age is reduced to O(n ×m×ms2). The computation of the mean vectors grows
linearly with the mask size.

Analytical solutions for other distance measures have to be considered in
dependency with the properties of the measure. If it is not possible to compute
the solution in a closed form, the algorithmic optimization decreases in any case
the computational costs.

4 Conclusion

In our paper we propose two different ways of improving the computational
time of the VMF (O(n × m × ms4)). Although there are some elements of the
algorithm of O(ms4), but these are not multiplied by n×m - this is a key point
of the algorithmic improvement.

The algorithmic way is independent of the used distance function. It reduces
the computational time by reusing computed pixel distances (O(n×m×ms3)).
The analytic way works only for the square Euclidian distance. This approach
reduces the computational costs of the VMF to O(n × m × ms2).

Further work remains to be done on extending the analytic way to any dis-
tance function.

References

[Aca04] Academic Computer Centre CYFRONET AGH. ICCS2004 – International

Conference on Computational Science, volume 4, Berlin, Germany, 6 2004.
Springer Verlag.

[AHN90] Jaakko Astola, Pekka Haavisto, and Yrjo Neuvo. Vector median filters. Pro-

ceedings of the IEEE, 78:678–689, 1990.
[HPP04] Vinh Hong, Henryk Palus, and Dietrich Paulus. Edge preserving filters on

color images. In ICCS2004 – International Conference on Computational

Science [Aca04], pages 35–42.



[PV00] Konstantinos N. Plataniotis and Anastasios N. Venetsanopoulos. Color Image

Processing and Applications. Springer Verlag, 2000. INF 2003/3326.


