
Exploration Transform: A stable exploring
algorithm for robots in rescue environments

Stephan Wirth
University of Koblenz and Landau

Universitätsstr. 1
56070 Koblenz, Germany
stwirth@uni-koblenz.de

Johannes Pellenz
University of Koblenz and Landau

Universitätsstr. 1
56070 Koblenz, Germany
pellenz@uni-koblenz.de

Abstract — Autonomous robots in rescue environments have to
fulfill several task at the same time: They have to localize themselves,
build maps, detect victims and decide where to go next for further
exploration. In this contribution we present an approach that provides
a robust solution for the exploration task: Based on the knowledge
of the environment that the robot has already acquired, the algorithm
calculates a path to the next interesting “frontier”. Our comprehensive
approach takes into account the distance to the next frontier and
the difficulty of the path for the robot. Those difficulties can result
from narrow passages but also from wide, open spaces where the
sensors cannot detect any landmark. For the native exploration task,
the algorithm is fed with occupancy grids. For the search task, it can
also process maps that encode additional information, e. g. places that
have not been searched by other sensors yet.

The Exploration Transform was successfully implemented on our
mobile system Robbie and was used during the RoboCup German
Open 2007 and the RoboCup World Championship 2007. Using this
approach, our Team “resko” achieved the “Best in Class Autonomy
Award” in the Rescue Robot League in both competitions.

Keywords: Robotic, RoboCup Rescue, autonomous naviga-
tion, path planning, exploration, USAR

I. INTRODUCTION

Robots need to know about the structure of their environ-
ment to be able to fulfill complex tasks [7]. Anyway, in rescue
situations resulting from earthquakes, this knowledge is not
available a priori: Even if floor plans of a collapsed building
are accessible, they are useless because it is likely that the
furniture and even walls have been moved due to the impact.
Therefore, the robots have to build their own maps while
localizing themselves. This problem is widely known as the
SLAM problem (Simultaneous Localization and Mapping) [3],
[5]. Beyond that, autonomous robots must also decide where
to go next to find out more about the environment (see [2]).
This problem can be split into two questions:

1) Select a target: Where should the robot go next to extend
the map or search for victims?

2) Choose a path: Which way should the robot take to reach
this target?

The approach that we present in this paper uses an occu-
pancy grid [1], that our mobile system Robbie builds auto-
matically while driving through an unknown environment. The
grid consists of cells which store the probability that the cell is

occupied. To generate this map, the algorithm uses the robot’s
odometry data and the sensor readings of a Hokuyo URG-
04LX laser range finder. The map building process uses a par-
ticle filter to match the current scan onto the occupancy grid.
This approach was successfully tested during the RoboCup
World Championship 2006, but relied on a remotely controlled
robot. To make the system fully autonomous, the exploration
behavior described in the following sections was implemented.

The paper is organized as follows: In section II, the related
work is presented. The different approaches for exploration
and path planning are explained. In section III the Exploration
Transform is developed as a combination of the solution
discussed in section II. It is extended to encourage the robot
to stay into the sight of walls, so the sensors can always
detect some landmarks. This behavior is known as “coastal
navigation” [6]. The complete algorithm was implemented on
our rescue robot Robbie. Section IV describes the results of the
experiments we conducted in different test arenas, including
the rescue arenas of the RoboCup German Open 2007 and the
RoboCup World Championship 2007.

II. RELATED WORK

A. Exploration

In [8], Brian Yamauchi proposes a frontier-based approach
to find the next exploration target. Occupancy grids are used
as an input for the algorithm. The key idea is as follows: In
order to get new information, go to a frontier that separates
known from unknown regions. Such a frontier is a cell in the
occupancy grid that is marked as free but has a neighboring
cell that is marked unknown. A segment of adjacent frontier
cells is considered as a potential target if it is large enough so
that the robot could pass it. If more than one potential target
is detected in the occupancy grid, then the closest target is
selected. An example of a floor plan and the extracted frontiers
is given in Fig. 1.

González-Baños and Latombe propose another approach to
select the next target point: In [2] they present an algorithm
that finds the point in the map from which the sensors can be
used optimal to extend the map (“next-best-view problem“).
To find this point, candidate target points around a frontier
are generated. For each candidate point, the size of the area

(a) Metric map (b) Extracted frontiers

Fig. 1. A metric map (stored as an occupancy grid) and the extracted frontiers of the map. The frontiers form lines that separate free from unknown areas.

is calculated which could be newly measured from this point.
The point that yields a view to the largest area is chosen.

B. Distance Transform

To find a way from an arbitrary starting point to a fixed
target Javis and Byrne [4] propose the distance transform. The
distance transform of an occupancy grid calculates for each
free cell the cost to reach the target cell. The cost between
two cells ci and cj (with no obstacle between them) can be the
city block distance, the chessboard distance or the euclidian
distance. After the distance transform has been applied for
each cell of the grid, the shortest path from any cell to the
target cell can be extracted by simply following the steepest
gradient.

Fig. 2(a) shows the distance transform using the chessboard
distance.

C. Obstacle transform and path transform

The distance transform always chooses the shortest way
between two cells. This way is not always suitable for robots,
because it often touches walls and goes through narrow
passages. Alexander Zelinsky’s path transform ([9], [10]) adds
a security component to the distance transform: An obstacle
transform Ω calculates for each cell the distance to the closest
obstacle. Fig. 2(b) shows the obstacle transform for a simple
floor plan.

The path transform Φ of a cell c to reach the target cell cg

is defined as follows:

Φ(c, cg) = min
C∈χ

cg
c

(
l(C) + α

∑

ci∈C

cdanger(ci)

)
(1)

with χ
cg
c the set of all possible paths from c to cg, l(C) the

length of the path C, cdanger(ci) the cost function for the
”discomfort“ of entering cell ci, and α a weighting factor ≥ 0.

The length l(C) of the path C can be calculated incremen-
tally:

l(C) = l(c0, . . . , cn) =
n−1∑

i=0

d(ci, ci+1) (2)

where d denotes the distance between two cells (e. g. the
chessboard distance).

The ”discomfort“ cost cdanger of a cell is calculated based
on the obstacle transform of this cell. For distances to the wall
that are smaller than half the size of the robot the cost should
be very high. Zelinsky’s choice for such a cost function (see
[11]) is given in (3).

cdanger(ci) =

{
(X − Ω(ci))3, if Ω(ci) ≤ X

0, else
(3)

The constant X determines the minimum distance to obstacles
and depends on the size of the robot and the accuracy of the
sensors and the map. The weight α in (1) determines how far
the path stays away from obstacles.

Again, to go to the target cell from any free cell, it is
sufficient to follow the steepest gradient.

III. EXPLORATION TRANSFORM

By combining the Yamauchi’s frontier based exploration
with Zelinsky’s path transform an elegant solution for the
exploration problem can be achieved: The path transform is
extended in a way that not the cost of a path to a certain
target cell is calculated, but the cost of a path that goes to a
close frontier. The path is not necessarily the shortest and the
frontier not necessarily the closest, since the cost is determined
by the distance and the safety of the path. The overall formula
of the Exploration Transform is given in (4).

Ψ(c) = min
cg∈F

(
min

C∈χ
cg
c

(
l(C) + α

∑

ci∈C

cdanger(ci)

))
(4)

with F the set of all frontier cells, χ
cg
c the set of all paths

from c to cg, l(C) the length of the path C, cdanger(ci) the
cost function for the ”discomfort“ of entering cell ci, and α a
weighting factor ≥ 0.

(a) Distance transform: The target cell is marked
with a T. To find the shortest way from any cell to
the target, the steepest gradient has to be followed.

(b) Obstacle transform: Each cell stores the distance
to the closest obstacle.

Fig. 2. Distance transform and obstacle transform

The Exploration Transform has the favorable property that
by construction no local minima can occur. Therefore, from
each cell a path to a close frontier can directly be extracted.

Compared to the path transform, the Exploration Transform
performs a search over all possible frontier cells. In the case
that the set F contains only one element c, the Exploration
Transform is identical to the path transform to the target cell
c.

The computation of (4) for each free cell in the occupancy
grid is done by a specialized flood-fill algorithm. First, all
frontier cells are chosen as seeds and all adjacent cells are
added to a queue of cells whose Exploration Transform value
has to be computed. The Exploration Transform value of a
cell is then computed as the minimum value of its eight
neighbouring cells plus the movement cost from this neighbour
to the current cell plus the weighted “discomfort cost” for the
current cell. Whenever an Exploration Transform value of a
cell changes, it’s neighbours might change their values too
so they are added to the end of the computation queue. The
Exploration Transform converges to its final state when the
queue runs out of elements. This way each free cell of the
occupancy grid is touched at least once. Though, experiments
showed that computation time for the Exploration Transform
can not be seen as a drawback, for an occupancy map of 500
× 500 pixels, the computation takes less than 500 ms on a
standard Pentium 1,3 GHz processor.

Fig. 3 shows an occupancy grid and two corresponding
Exploration Transforms. Areas in Fig. 3(b) and 3(c) close to
frontiers are dark, which shows a short distance to a frontier.
Areas that are further away from any frontier are marked
light, showing a higher cost. The weighting factor α of the
Exploration Transform determines how much a safer path is
preferred over a shorter one. Fig. 3(b) and 3(c) show different
paths for different settings of α.

A. Coastal navigation

Equation 3 forces the robot to stay away from obstacles, no
matter how far the robots gets away from them. This bears
the risk that the sensors (with their limited range) cannot see
any landmarks. This should be avoided, because the robot

needs landmarks for localizing itself and for extending the
map. Therefore, the cost function is extended in a way that
(a) the robot is encouraged to stay away from obstacles at a
distance of dopt and (b) never gets closer than dmin. The new
discomfort cost cdanger of a cell c with distance d to the next
obstacle is calculated as follows:

cdanger(c) =
{ ∞, if d < dmin

(dopt − d)2, else. (5)

Fig. 4(a) and 4(b) illustrate the discomfort costs of a sample
map with different parameters.

B. Merging the occupancy grid with other sensor data

As described so far, the Exploration Transform works on
the occupancy grid only. This is sufficient if the tasks of the
robot are solely exploration and mapping of the environment.
But if the robot has to fulfill another task at the same time,
the exploration strategy has to be refined. In our case, while
exploring, the robot searches for victims using a thermal sensor
with a field of view of 180◦ and a range of only 2 meters (the
laser range finder has a range of 4 meters). To keep track of the
areas that the thermal sensor has scanned and that are mapped
by the laser scanner, a second grid called the the navigation
grid, is calculated as follows:

navGrid(ci) =





free, if occGrid(ci) = free ∧
ScannedbyThermalSensor (ci)

occupied, if occGrid(ci) = occupied
unknown, else.

(6)
Using the navigation grid for the Exploration Transform

instead of the occupancy grid, paths to areas that yet were
not scanned by the thermal sensor are computed and the
robot is able to scan systematically the whole environment
by following these paths.

C. Path optimization

The result of the path planning is a list of adjacent cells
in the occupancy grid. Anyway, only a subset of these cells
is required to describe a safe way from the starting point to

(a) Occupancy grid (b) Exploration Transform with
short path

(c) Exploration Transform with
safe path

Fig. 3. Occupancy grid (a) and the corresponding results of the Exploration Transformation for different values of α (b) and (c). Dark cells in (b) and (c)
indicate a short distance to the next safe frontier, white cells indicate a long way. In (b) a shorter and in (c) a safer path is chosen.

(a) dmin = 3, dopt = 20 (b) dmin = 5, dopt = 30

Fig. 4. ”Discomfort“ costs for different parameters. In (a) the robot would stay close to walls and also uses narrow passages, in (b) the robot would stay
further away from walls and avoids to use narrow ways.

the frontier: In regions with nearby obstacles, more points are
chosen than in regions with no obstacles. The result of the
obstacle transform is used to determine the required distance
between two waypoints of the path. Fig. 5 shows a path that
consists of the original 212 cells and the reduced path of only
10 waypoints.

IV. EXPERIMENTS

We tested the approach on our mobile system Robbie, which
is able to generate a map online using a laser range finder with
a range of 4 meters. The constantly growing map was used
as the input of the Exploration Transform. The final maps
(after the exploration) are shown in Fig. 6. In 6(a), the robot
first follows the large (and therefore safe) frontier on the right
side, and avoids to enter the door in the lower end. It keeps a
distance of about 0.8 m from the walls, which was set as the
optimal distance to obstacles. The other maps also show that

the robot prefers larger passages. Overall, the robot comes up
with a nosy, but secure behavior.

The algorithm relies on correct maps of the environment
(which might be incomplete). Anyway, if a path is planned
on a corrupted map, the robot stops in front of an obstacle,
and updates the map. After the update process, the robot
recalculates the path and continues driving.

V. CONCLUSION

In this contribution we presented a novel approach for path
planning of autonomous robots in rescue environments. The
approach combines the frontier based exploration with the
path transform and extends it with coastal navigation and the
possibility to work on multi-sensor data. The algorithm is fast
enough so that it can be used on our mobile system Robbie
for online exploration. The algorithm has properties that make
it very usefull for rescue robots:

(a) Floor plan (b) All adjacent free cells on the path (c) Optimized path

Fig. 5. Path optimization: (a) shows the original floor plan, (b) the extracted path from the top left to the lower right, consisting of 212 free cells. In (c),
the path is reduced to only 10 waypoints.

(a) Hallway at the University of Koblenz and Lan-
dau

(b) Hallway and offices at the University of
Koblenz and Landau

(c) Arena at the RoboCup German Open 2007

Fig. 6. Metric maps, generated during autonomous missions. The distance between the white lines is 1 m, the grid size of the occupancy grid was
0.05 × 0.05 m in (a) and (b), 0.1 × 0.1 m in (c). The line that ends with an arrow marks the path the robot followed during exploration. It shows that the
robot looked ”nosy“ behind the barriers.

• The range of different sensors can be handled. In our
case, the limited range of a thermal sensor (about 2 m,
compared to 4 m of the laser range finder) limits the
range of the exploration behavior.

• The algorithm works on noisy and incomplete maps.
• If a path exists from the current robot position to a

frontier, the algorithm always returns a safe way with
a minimal set of waypoints.

The approach was used by the Team “resko” of the University
of Koblenz and Landau during the RoboCup German Open
2007 in Hannover (Germany) and during the RoboCup World
Championship 2007 in Atlanta (GA, USA). The team achieved
the “Best in Class Autonomy Award” in both competitions.

REFERENCES

[1] A. Elfes. Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57, 6 1989.

[2] Héctor H. Gonzáles-Baños and Jean-Claude Latombe. Navigation
strategies for exploring indoor environments. The International Journal
of Robotics Research, 2002.

[3] J. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proceedingsof the IEEE International Symposium on

Computational Intelligence in Robotics and Automation (CIRA), pages
318–325, Monterey, California, 1999.

[4] R. A. Jarvis and J. C. Byrne. Robot navigation: Touching, seeing an
knowing. In Proc. Australian Conf. on Artificial Intelligence, Melbourne,
Australia, 1986.

[5] J. M. M. Montiel, Jose A. Castellanos, J. Neira, and J.D. Tardós. The
spmap: A probabilistic framework for simultaneous localization and map
building. IEEE Transactions on Robotics and Automation, 15(5):948–
952, 1999.

[6] Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun.
Coastal navigation: Mobile robot navigation with uncertainty in dynamic
environments. In ICRA, pages 35–40, 1999.

[7] Sebastian Thrun. Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99(1):21–71, 1998.

[8] B. Yamauchi. A frontier-based approach for autonomous exploration.
1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation, page 146 ff., 1997.

[9] Alexander Zelinsky. Robot navigation with learning. Australian
Computer Journal, 20(2):85–93, 5 1988.

[10] Alexander Zelinsky. Environment Exploration and Path Planning
Algorithms for a Mobile Robot using Sonar. PhD thesis, Wollongong
University, Australia, 1991.

[11] Alexander Zelinsky. Using path transforms to guide the search for
findpath in 2D. I. J. Robotic Res, 13(4):315–325, 1994.

