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Abstract
Automatic extraction of local features from images plays an

important role in many computer vision tasks. During the last

years, much focus has been put on making the features invariant

to geometric transformations such as a rotation and scaling of

the image. Recently, some work has been published concerning

the integration of color information into the detection and de-

scription step of SIFT. In various evaluations, it has been shown

that including color information can increase distinctiveness and

invariance to photometric transformations caused by illumina-

tion changes. In this paper we build on the results from these

approaches and apply them to the SURF descriptor, which is ad-

vantageous compared to SIFT in terms of speed, making it a per-

fect candidate for online applications, for example in the field

of robotics. Our results show significant improvements concern-

ing the repeatability and destinctiveness of SURF for 3d objects

under varying illumination directions.

In contrast to many other evaluations we also determine the

accuracy of the orientation assignment and include this into our

comparisons.

INTRODUCTION
Although color cameras are widely spread nowadays, most

popular state of the art feature detector and descriptor algorithms

like SIFT [1] and SURF [2] still operate on intensity images only.

It is obvious that by disregarding color values one loses informa-

tion. An edge between a green and a blue patch for example

would only provide the same information as between two shades

of gray, other color edges might not be recognizable in a gray

scale image at all. Additional color information could be useful

in the detection step to identify salient interest points defined by

a change in color. A descriptor encoding color information is

expected to provide a higher distinctiveness than those based on

intensity only. From these assumptions the following questions

arise:

• How can color information be included in the detection

to gain access to features whose localization is based on

changes in color and not necessarily intensity?

• How can color information be included in the descriptor

to improve the distinctiveness and hence recognizability of

feature points?

In this paper we propose an extension to the SURF algo-

rithm which works on color images and yields better results in

terms of repeatability of the detector and distinctiveness of the

descriptor.

The rest of the paper is organized as follows: The next sec-

tion will give an overview of lately proposed methods for enhanc-

ing existing feature descriptors with color information. Follow-

ing that, we discuss basic choices of color space, the inclusion

of color in scale space representations as well as color invariants

and color boosting. The next two chapters deal with the integra-

tion of color information into the detection step and descriptor

respectively. They also contain an evaluation of our algorithm.

The final chapter summarizes the paper.

Related Work
During the recent years there were several suggestions how

to include color information into state of the art local interest

point detectors and descriptors. Goedemé et.al. [3] propose an

additional step after matching SIFT descriptors in which a 3

dimensional color descriptor based on global color moments is

used to sort out wrong matches, i.e. matches for which the dis-

tance of the color descriptors exceeds a fixed threshold. Bosch

et.al.[4] introduce a color SIFT descriptor using HSV color

space, but for a dense sampling approach in contrast to sparse

interest point detection. Burghouts and Geusebroek [5] compare

several SIFT descriptor variations utilizing color features invari-

ant to different photometric transformations. Van de Weijer et.al.

show how to improve the saliency of detected interest points by

using color information [6] and propose a color histogram based

method to improve the SIFT descriptor [7]. Abdel-Hakim and

Farag [8] propose an extension to the detection as well as the de-

scriptor step of SIFT based on color invariants. An overview and

evaluation of possible color invariants for descriptors is given by

van de Sande et.al. in [9].

Using color images
In order to build a descriptor which is invariant to certain

changes in illumination, we have to define the underlying re-

flectance model first. We assume Lambertian reflectance of sur-

faces and additional omnidirectional diffuse , which leads to an

image creation process modeled as follows:

Ik(x,y) =
∫

e(λ )s(x,y,λ )ρk(λ )dλ +
∫

a(λ )ρk(λ )dλ (1)

e(λ ) are the spectral characteristics of the light source, s(x,y,λ )
is the surface reflectivity on the point measured by the sensor at

(x,y) and ρk(λ ) is the camera sensitivity curve for channel k.

a(λ ) is the ambient term.

Possible color invariants
Many photometric invariants have been proposed to gain ro-

bustness or invariance towards changes in illumination [10, 11,

12, 13, 6]. We take a closer look at two invariants proposed in

[10] which delivered the best results in recent evaluations [9, 5].

Both are defined on the scale space representation Lk,k ∈ [1,2,3]
of the image Ik:

Lk(·,σ) = G(·,σ)∗ Ik ,

where G is a two-dimensional Gaussian kernel with vari-

ance σ , ∗ denotes the convolution and k the image channel.

W invariant: The W invariant is defined as the derivative of the

image signal, normalized by the intensity channel L1. It is

invariant to local intensity changes, assuming planar sur-

faces which do not exhibit shading effects.

Wk,x =
Lk,x

L1
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Wk,xx =
Lk,xx

L1

C invariant: The C invariant is defined as the derivative of the

intensity-normalized color channel Lk

L1
,k ∈ [2,3], thus being

invariant to shadow and shading:

Ck,x =
Lk,xL1 −LkL1,x

L2
1

Ck,xx =
Lk,xxL2

1 −LkL1,xxL1 −2Lk,xL1,xL1 +2LkL2
1,x

L3
1

Wk,y, Wk,yy, Wk,xy, Ck,y, Ck,yy and Ck,xy are constructed in analogy to

the above definitions.

Since the invariants become unstable in dark regions of the

image due to noise, we set the values as well as the derivatives to

zero if the intensity is less than 5%.

The choice of color space
We compared several color spaces which are related to RGB

by a linear transform. All provide a channel that only contains

intensity information, thus allow the calculation of the W and

C invariants. YCbCr [14] is a native format for many cameras

and thus directly accessible without the need of conversion. The

Gaussian color space [15] is designed so its sensitivity curves

approximate Gaussian functions. Thus, its color channels can be

interpreted as Gaussian derivatives of the underlying light spec-

trum in the wavelength domain. Considering the derivative of

normalized RGB [9] with the normalized channels r = R
R+G+B

and g = G
R+G+B as a special case of the C invariant results in

the IRG color space, where I = R +G +B. The opponent color

space is introduced in [6]. The Gaussian, opponent and IRG

color spaces are considered as they have shown superior per-

formance compared to others like HSV in previous evaluations

[5, 9].

Results of descriptor performance tests using these color

spaces are part of the evaluation.

Color boosting
In [6], a method called color boosting is introduced, which

aims at improving the distinctiveness of detected features by scal-

ing the intensity and color channels of the opponent color space

with respect to their information content. In [16], it is shown that

combining a color-boosted detector with color-based SIFT fea-

tures can achieve an improvement of up to 30% on classification

compared to the intensity based SIFT. We propose a simplified

alternative, scaling the intensity channel with a factor of 0.5 in-

dependent of the color space. Figure 1 illustrates the effect of

this transformation on our interest point detector.

(a) without boosting (b) with boosting

Figure 1: Effect of color boosting on the detection of interest

points.

Color in the detection step
Salient interest point detection in color scale space can be

done by two different approaches: Using a single function that

operates on all channels or treating the channels separately.

Ming et al. [17] proposed substituting the derivatives in

the Hessian matrix by a weighted sum of the derivatives of all

channels. However, Shi et al. [18] point out that this way, the

derivatives may cancel out. Thus, the authors suggest the use

of quaternions to represent the color information. However, the

method relies on the calculation of the eigenvalues of the result-

ing quaternion Hessian matrix. This is computationally quite in-

tensive [19] and thus not feasible for fast feature detection.

For our evaluation, we analyzed the channels separately for

maxima of the determinant of the Hessian, just like the origi-

nal SURF paper does on gray level images (called “colorSURF-

separate” in the evaluation). If several maxima are found on the

same location in scale space, the one with the highest value pre-

vails and generates a feature. We compared this approach with

examining the sum of determinants of the channels as a com-

bining function (colorSURF-sum). This approach has the advan-

tage that blobs with different polarities (e.g. light blobs on dark

ground or dark blobs on light ground) in the different channels

on the same spot will enforce each other instead of canceling out.

The results are part of the evaluation of the descriptor repeatabil-

ity.

Color feature descriptor
Sampling of color information

The intensity part of the descriptor is sampled from the in-

tensity channel in 4× 4 subregions, as described in [2]. For the

sampling of the color information, we tried sampling from 1×1

up to 4× 4 subregions. Since only the approach with just one

subwindow was significantly worse than the rest, we chose to

sample from 2× 2 subregions. Figure 2 shows recall-precision

curves for different numbers of subregions, tested on the ALOI

data sets; the same evaluation on Mikolajczyk’s images gave sim-

ilar results.

The color data of the 2 color channels is then appended to

the descriptor formed from intensity data, thus yielding a vector

of length 96.

4550556065707580859095
0

10

20

30

40

50

60

70

80

90

100
ColorSURF−gauss−sub1
ColorSURF−gauss−sub2
ColorSURF−gauss−sub3
ColorSURF−gauss−sub4

precision

re
ca

ll

Figure 2: recall-precision for different numbers of subregions,

evaluated on ALOI.

EXPERIMENTS AND EVALUATION
For our experiments, we used two different image databases

provided by the community: The illumination direction collec-

tion of the Amsterdam Library of Object Images (ALOI [20])

and the evaluation framework provided by Mikolajczyk [21].
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Figure 3: Repeatability of the detector under different illumina-

tions using 100 objects from ALOI.

For our tests with ALOI, we picked a random set of 100

objects from the database, each containing six images. In theses

image series the camera angle does not change, but the illumina-

tion azimuth is very different. Figure 11 shows an example. We

use the image with all 5 lamps turned on (c1, l8) as reference and

the others (c1, l1-l5) to measure performance.

From the framework of Mikolajczyk we used the graffiti

(Figure 14) and bricks scene for tests under a change in view-

point. The bark scene (Figure 12) has zoom and rotation. Since

the other zoom/rotation scene from Mikolajczyk’s data set is a

gray scale image, we created another one containing an artificial

affine transformation: the fields scene (Figure 13).

Unless otherwise stated, all tests have been performed using

the Gaussian color space. The descriptor performance has been

tested by matching the reference image with the second image of

each image series (e.g. 15◦ light azimuth for the ALOI images).

Our implementation is based on a SURF implementation

provided by Anael Orlinsky, which is part of the software Pan-

o-matic 1. We evaluated various open source implementations

of SURF and found that it performs best, giving almost identical

results to the binaries provided by the authors of [2].

Repeatability of the interest point detector
The most important aspect of an interest point detector is

it’s repeatability, which means that the same interest points in

the world are detected again under different viewing angle and

changes in illumination. We define repeatability as the quotient

of recognized mutual interest points in the common region of

two images and minimum number of features found in any of

the images in that region. Interest points are considered as being

recognized if their associated regions projected into one common

image coordinate system overlap by a certain degree, as in [21].

We tested the repeatability on ALOI as well as Mikola-

jczyk’s data to cover change in illumination, change in viewpoint

as well as in plane rotation and zoom separately. The results sug-

gest that color based detection treating the channels separately

increases the stability of the detector in most cases. For large

changes in illumination in the ALOI data, the detectors based on

the W invariant outperform the non-invariant detectors especially

for large illumination azimuths (see Figure 3). However, the re-

peatability drops on Mikolajczyk’s data (Figure 4). The effect

was most significant in presence of JPEG compression (”UBC”

series) and underexposure (“Cars” series).

The color boosting in the detection step should yield more

distinctive interest points when combined with a color descriptor.

Thus, we test the performance of the W1C2C3 descriptor for the

1http://aorlinsk2.free.fr/panomatic/
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Figure 4: Mean Repeatability of the detector for Mikolajczyk’s

images.
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Figure 5: Performance of the W1C2C3 descriptor when using dif-

ferent invariants in the detection phase.

interest points detected by the different detectors. Results show

that this effect is very small (see Figure 5). When using the W in-

variant on Mikolajczyk’s data, the inclusion of color information

in the detector even decreases the performance. The W invariant

with separate detection in all channels gives the best results on

ALOI data, while the performance drops in Mikolajczyk’s data

with increasing invariance. Because the results are in general

worse on the ALOI data, we favor the separate non-invariant ap-

proach for detection.

Accuracy of the orientation assignment

Assigning the correct orientation to a localized keypoint is

crucial. An erroneous orientation directly influences the result-
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ing descriptor and can lead to failures in matching. This has

been neglected in most preceding analyzes of color extensions.

To make sure that the orientation is still stable we analyzed the

keypoints that were recognized again in the repeatability test for

illumination change and checked for errors in orientation assign-

ment. We compared different combinations of invariants (suffix

-W and -WC in the graph) and two different approaches of com-

bining the information from all channels. The first one builds one

orientation histogram from all single channel gradients (suffix -

separate) and the second one adds the gradients of all channels

for each sample before building the histogram (suffix -sum).

Figure 6 shows that the summing of the W1,C2 and C3 gradi-

ents yields slightly better results than the other methods on ALOI

data, especially for large changes in illumination azimuth. Pre-

cision and recall of the descriptor based on the invariants W1,C2

and C3 is improved accordingly on ALOI data, while for Miko-

lajczyk’s images the performance slightly drops (see Figure 7).
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Figure 6: Mean error in orientation assignment under different

illumination directions.

Descriptor performance
We compared the original gray level descriptor (entitled

“SURF” in the graphs) to the color descriptor without addi-

tional invariance (ColorSURF) and the color descriptor based

on the invariants W1,W2,W3 (ColorSURF-W) and W1,C2,C3

(ColorSURF-WC). The keypoints were detected using the origi-

nal SURF algorithm.

We expect the WC-descriptor to improve in the ALOI im-

ages because of the invariance towards the present changes in

illumination. Mikolajczyk’s database does not contain changes

in illumination geometry, thus adding invariance is not expected

to improve results.

As Figure 8a shows, there is a notable improvement us-

ing the W and C invariants when dealing with 3d objects un-

der changing illumination azimuth. The descriptor based solely

on the W invariant yields a higher maximum precision than the

combination of W1 with C2 and C3. Adding invariance and

color information has very little effect on the performance for

the database of Mikolajczyk (see Figure 8b).

Performance of the different color spaces
We computed recall-precision curves for the different color

spaces on ALOI as well as Mikolajczyk’s data sets. Results are

shown in Figure 9 Except for IRG, all color spaces perform quite

similar.

Final results
We compared our algorithm “colorSURF”, using the

W1W2W3 invariants in detection and W1C2C3 in orientation as-

signment and description to the original SURF implementation

provided by the authors. Channels are treated separately in all
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Figure 7: Descriptor Performance of the W1C2C3 descriptor

when using different methods of orientation assignment.

stages. SURF-64 denotes the standard SURF descriptor and

SURF-128 the extended descriptor of length 128. Our descrip-

tor uses 2× 2 subregions for the color channels, thus yielding a

descriptor of length 96.

It can be seen that the performance for the different methods

is very similar on Mikolajczyk’s data, while under the illumina-

tion changes present in the ALOI data, the color based algorithm

clearly outperforms the others (see figure 10).

CONCLUSION
We proposed a method to integrate color information to the

SURF detector and descriptor. We tested the influence of color

space, color invariants and sampling size of the color descriptor

separately, as well as different strategies for extrema detection in

color scale space.

The evaluation revealed that integration of color informa-

tion can improve the distinctiveness of the SURF descriptor. By

using color features with certain invariances towards photometric

effects, the robustness against changes in illumination azimuth is

enhanced for 3d objects.

The combination of an upgraded detection and integration

of color features results in an overall significant performance

improvement for 3d objects under different lighting directions,

while for constant lighting and geometric transforms the restric-

tions are minimal.

As color features impose only little overhead to the compu-

tation of SURF features, a color SURF computation can still be

considered for time-critical vision tasks.
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Figure 8: Descriptor performance using different invariants. On

ALOI data, the invariant color descriptors show a significant im-

provement. On Mikolajczyk’s data, the performance gain by us-

ing color information is very small.
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Figure 9: Descriptor performance for different color spaces.
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Figure 10: Final comparison of our approach to the original

SURF implementation. ColorSURF increases the performance

of up to 25% compared to the original SURF when large changes

in illumination azimuth are present, while performing similar

otherwise.

Figure 11: Images from the ALOI [20] database used to evaluate

the detector. For the first image (c1, l8), all five light sources

are turned on. This is used as a reference. The others (c1, l1-l5)

are used to test the interest point detector and descriptor under a

significant change in illumination azimuth.

Figure 12: Image series “Bark” from the evaluation framework

provided by Mikolajczyk [21]. Image 1 is used as reference, the

detector and descriptor performance under an in plane rotation

and zoom is tested with the other images.

Figure 13: “Fields” image series containing artificial affine trans-

formation.

Figure 14: “Graffiti” image series from the evaluation framework

provided by Mikolajczyk [21].
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