
Pedestrian Detection in Outdoor Images using Color and Gradients

Marcel Häselich Michael Klostermann Dietrich Paulus
Active Vision Group, University of Koblenz-Landau, 56070 Koblenz, Germany

{mhaeselich, michaelk, paulus}@uni-koblenz.de

Abstract— Pedestrian Detection in digital images is a task of
huge importance for the development of autonomous systems
and for the improvement of robots interacting with their
environment. The challenges such a system has to overcome are
the high inter-class variance of pedestrians and the demands
of unstructured environments. Outdoor environments contain
unknown regions, inhomogeneous illumination, and parts of the
pedestrians can be occluded.

In this work, a complete system for pedestrian detection
is realized according to state-of-the-art techniques. As main
features, we use the “Histograms of Oriented Gradients”
in combination with the “Color Self-Similarity” feature as
proposed by Walk et al. We describe and evaluate our complete
detection approach and our new structure element is able to
accelerate the Color Self-Similarity computations by a factor
of four.

Index Terms— Human Detection, Computer Vision

I. INTRODUCTION

The increasing amount of sensor information necessitates

an automatic pedestrian detection to enhance or automate

important tasks in everyday life. Autonomous robots need

to perceive humans in their environment in order to avoid

collisions or to interact with them. A key challenge is

the high variability of pedestrians. Persons differ in their

form, pose, clothing, and color and hence possess a high

inter-class variance. Other difficulties arise from the outdoor

environment. The area around the sensor is unknown and

inhomogeneous and parts of the pedestrians can be occluded.

Unknown ambient light conditions complicate the detection

and may cause erroneous or falsified sensor data.

In our approach we use the “Histograms of Oriented

Gradients” (HOG) [1] to encode the shape and appearance

of a pedestrian. Walk et al. [2] present the “Color Self-

Similarity” (CSS), a feature that describes color relations

within a detection window and forms a well-suited addition

to the gradient histograms. Our goal is to realize a fast,

robust, and portable camera-based pedestrian detection for

our autonomous outdoor robot. For this task we extend the

approach of Walk et al. and integrate it into our robotic

framework. We identify the computation of the color sim-

ilarities as cost-intensive part and present a new structure

element that accelerates the computations.

II. RELATED WORK

In the past years, a large number of approaches emerged

and a significant progress could be observed. A recent

publication of Dollar et al. [3] especially addresses this

situation and presents an elaborate evaluation of sixteen state-

of-the-art detectors. The evaluation yields that despite the

steady progress over the last years, there is is still room for

improvement in case of low resolution images or for partially

occluded pedestrians.

Regarding the components of current detectors, the train-

able system of Papageorgiou and Poggio [4] can be seen

as pioneering work for many approaches. Their approach

computes a feature vector from a detection window that is

classified afterwards by a Support Vector Machine (SVM) [5]

with polynomial kernel. The authors present a large number

of features and select relevant ones manually to detect faces,

persons and cars.

Viola et al. [6] present an approach that is based on their

previous work on facial recognition [7]. Their approach

uses AdaBoost [8] combined with decision trees for the

learning. The classification is distributed on a cascade of

true/false decisions and is further accelerated by computation

principles for rectangular sums presented by Crow et al. [9].

Dalal and Triggs [1] present the HOG feature which is

able to encode the shape of a pedestrian in a robust way. It

is computed from normalized three-dimensional histograms

quantized in position and gradient orientation. Dalal and

Triggs use a linear SVM for classification. Prisacariu and

Reid [10] demonstrate the real-time capability of the HOG

feature without loosing quality using GPGPU techniques. In

a subsequent approach, Dalal and Triggs [11] introduce the

feature “Histograms of Oriented Flow” (HOF). This feature

adopts the principle of HOG to the optical flow [12] to

increase the classification quality.

The detection quality of HOG-based approaches can be

increased through combination with complementary features

and other learning approaches. Wojek et al. [13] focus on

moving images and examine the quality of HOG, HOF

and Haar-Wavelet features in combination with different

learning algorithms. Besides the combination of linear SVM

and HOG introduced by Dalal and Triggs, the histogram

intersection kernel SVM presented by Maji et al. [14] is

examined by Wojek et al. In addition, AdaBoost and the ex-

tension MLPBoost [15] are used. The comparison yields that

movement information is helpful for detecting pedestrians

moving sideways.

Walk et al. [2] present a pedestrian detection system that

uses a histogram intersection kernel SVM in combination

with HOG, HOF, and a new feature called CSS. The CSS

feature encodes the color similarity of all cells within a

detection window and is supposed to describe color relations

from objects and background.

Zhu et al. [16] integrateAdaBoost with HOG features to



realize a human detection system. The authors use the work

of Porikli [17], who showed that the fast computation of rect-

angular sums on integral images is portable to histograms.

An integral image is created for each histogram bin and the

resulting integral histogram can be used to compute arbitrary

rectangular histograms. The resulting detector of Zhu et al.

achieves an acceleration of factor 70, but is unable to uphold

the quality of the original HOG variant.

Dollar et al. [18] generalize this idea and present the

“Integral Channel Features”. In their approach, the authors

investigate various channels and use the boost approach to

determine relevant features. For the detection of pedestrians,

8 channels consisting of gradient magnitude, gray-value

image and gradient histogram (6 channels) are used.

Based on the Integral Channel Features Dollar et al. [19]

publish a speed-optimized extension. Since the gradients

and gradient histograms are not scale-invariant, the authors

approximate the necessary pyramid of features from different

scales by using neighborhood information. Although detec-

tion quality is affected by this approximation, pedestrians

can be detected in multiple images per second.

Felzenszwalb et al. [20] propose a part-based approach for

pedestrian detection. Their approach uses the HOG feature as

well and defines a two-dimensional star pattern to model the

part-whole relation of the pedestrians. Felzenszwalb et al.

choose a latent SVM which is able to encode the relative

position of the parts as hidden variables.

III. APPROACH

Despite the steady progress over the past years there is still

room for improvements. In particular, detection is disappoint-

ing at low resolutions and for partially occluded pedestrians.

Further, the performance in terms of run-time an memory

consumption is not yet optimal. A detector, a classifier and

the HOG and CSS features form the main components of

our approach. Detections on an input image are represented

by enclosing rectangles. Our trained classifier decides for

each rectangle if a pedestrians is contained or not and how

confident he is with his decision. Classification is not directly

performed on the images but on their features. The following

section describes our approach and is subdivided into parts

for the detector, the classifier, and the features.

A. Detector

Our search for pedestrians in an input image uses a sliding

window framework with a fixed window size. Each window

needs a binary classification if a pedestrian is sufficiently

contained. A fixed window size alone results in a pedestrian

detection that is limited to pedestrians of a fix size and is not

scale-invariant. Hence, the input image is transformed into

multiple scales and the fixed-size window operates on each

scale with the given offset. The input image is initially scaled

by a factor sstart ≥ 1 and subsequently shrunk by a factor

0 < sshrink < 1. The parameter sshrink controls the resolution

of the scale space and the number of scales is computed as

kscales =

⌊

log(min(
nimg

nwin
,
mimg

mwin
)) + log(sstart))

− log(sshrink)
+ 1

⌋

(1)

0
100

200
300

400
500

600

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

150

200

250

300

350

(a) (b)

Fig. 1. Non-maximum suppression using the mean shift algorithm. In the
upper image detections are marked as blue plus-signs and estimated means
are red crosses, corresponding to the bounding boxes in the lower image.

where nimg×mimg and nwin×mwin are the image and window

size, respectively.

The classification of all windows on all scales yields a

number of detections that accumulate around the pedestrians

(cf. blue rectangles in Fig. 1 (b)). Those multiple detections

for a single target need to be aligned. There exist different

approaches to realize such a thinning or non-maximum sup-

pression. Dollar et al. [18] for example perform a pairwise

comparison of overlapping windows and discards the ones

with the lowest decision value. For our approach we follow

the method of Dalal et al. [11] and use the mean shift

algorithm [21]with uncertainty-vector ρ given as

ρ = (ρx, ρy, ρz) = (4, 8, log (1.6))T . (2)

The uncertainty σi for the i-th detection are computed w.r.t.

to the scaling factor si as

σi =
1

si
(ρx, ρy, ρz)

T
(3)

Fig. 1 (a) shows an example in which detections are depicted

as blue plus-signs and estimated means as red crosses. The

corresponding bounding boxes are visualized in Fig. 1 (b)

where the red boxes are the ones selected by the non-

maximum suppression.

B. Classifier

The task of the classifier is to perform a binary classi-

fication between pedestrian and non-pedestrian as precise

as possible. Therefore, we train an SVM for the detection

windows. We use a linear Soft-Margin SVM [22], [23] with

a feature vector that will be described in Sec. III-D. Given

the two classes ω1 and ω2 with corresponding feature vectors

xi with i = 1, ..., l, their affiliation is encoded by yi defined

as

yi =

{

−1, if xi belongs to ω1

+1, if xi belongs to ω2

. (4)

The linear Soft-Margin SVM approach computes a separat-

ing hyperplane that discriminates between the positive and

negative feature vectors. The cost-function that needs to be

minimized is given as

min
w,b,ξ

1

2
wTw + C

l
∑

i=0

ξi (5)

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0 (6)



where w is the normal of the hyperplane, b encodes the

distance of the hyperplane to the origin of the coordinate

system, and C is a weighting factor. The vector ξ =
(ξ0, ..., ξi, ..., ξl) describes the influence of correct and false

classifications on the hyperplane. The solution yields the

hyperplane defined by the normal vector w and the variable

b. A feature vector x can now be classified according to

sign
(

wTx+ b
)

. (7)

For this work, we used LIBLINEAR from Fan et al. [24]

which is optimized for linear SVMs with a plenty of data.

C. Training

For the training of the SVM we worked with 615 positive

and 1218 negative samples. Positive samples are extracted

from annotations and negative samples are generated at

random at all scales from images without pedestrians. In

order to reduce the number of false positives, we perform an

extended bootstrapping in which we retrain our SVM with

difficult samples. The model created in the first iteration

is therefore applied on images without pedestrians on the

whole scale space. Since all detections are false positives, we

add them as such to our model. This step is repeatable and

lowers the number of false negatives, but also influences the

number of true positives. True positives that were close to the

hyperplane before an iteration might not be detected again by

the classifier afterwards. We observed that two bootstrapping

phases adequately reduce the false negatives while preserving

the number of true positives.

D. Features

Features encode occurring patterns as multi-dimensional

feature vectors. For the previously described detection win-

dows, we compute the HOG and CSS features as follows.

Histograms of Oriented Gradients

The HOG feature introduced by Dalal and Triggs [1] is able

to bundle the gradient information and still allows variations

in the pose. In the first step, the gradient magnitude and

orientation are calculated. Gradients are calculated from a

convolution of the image with the filter cores [−1 0 1] in

x- and [−1 0 1]
T

in y-direction. The gradient magnitude is

computed as

gmag(x, y) =

√

(

d

dx
f(x, y)

)2

+

(

d

dy
f(x, y)

)2

(8)

and the gradient orientation is defined as

gori(x, y) = tan−1

(

d
dy
f(x, y)

d
dx
f(x, y)

)

. (9)

In the next step the image is segmented into equidistant

HOG-blocks. For each HOG-block, the gradient magnitudes

are weighted with a two-dimensional Gaussian fg

fg(x, y) = exp

(

−

(

(x− x0)
2

2σ2
+

(y − y0)
2

2σ2

))

(10)

with (x0, y0) as block center and σ as half the block width.

Afterwards, a three-dimensional histogram is computed for

each HOG-block with a resolution of ξ×ξ×β, where β denotes

the resolution of the gradient orientation. Each pixel of each

block is registered in the histogram according to its relative

position in the block and its gradient orientation. Entries

in the histogram are made using trilinear interpolation. The

resulting vector h is normalized using the L2−Hys normal-

ization. Our first feature vector is formed by concatenation

of all normalized histograms of all HOG-blocks which are

contained in the detection window.

Color Self-Similarity

Our second feature is the CSS-feature introduced by Walk

et al. [2]. Complementary to the shape description of the

HOG-feature, CSS encodes the color information. Dollar

et al. [18] have shown that integral channel features are

able to record a peak in the Hue channel in the area of

the head, but not for the rest of the body. CSS circumvents

this limitation by considering color similarities instead of

accessing the color values directly.

For the computation of the CSS-feature, the image is

initially converted to the HSV space. The detection window

is subdivided into quadratic cells of size ζ×ζ and for each

cell a three-dimensional color histogram of 3× 3× 3 is

constructed. Similar to the HOG-feature computation, the

histogram is filled with the pixels contained in the cell and

a trilinear interpolation is performed. Afterwards, for each

cell the color similarity to any other cell of the window is

computed. The measure that is used to calculate the similarity

is the histogram intersection dHI, which is calculated for two

histograms H and V as

dHI(H,V ) =
∑

k

min(H(k), V (k)) , (11)

where k iterates over all classes of the histogram. This

similarity can be normalized by the value dmax = ζ2, which

is given by the number of pixels contained in one cell,

yielding the similarity measure

dCSS(H,V ) =
dHI(H,V )

ζ2
(12)

with the range of values [0, 1]. In order to map all similarities

from each cell to all other cells, n(n − 1)/2 values are

required, where n is the number of cells of a detection

window. Those n(n − 1)/2 form the feature vector of the

CSS-feature. The feature is able to describe the similarity of

body parts and the similarity of background regions, which

are interrupted by the appearance of pedestrians.

For an example of 128 cells, ζ = 8, and a detection win-

dow of size 64×128, there are 8128 similarities computations

required. The computation of the similarities for one window

is illustrated in Fig. 2 (a). In the image, a circle represents

the computation of a similarity with the cell marked with a

cross. The complexity for each detection window w.r.t. the

number of cells n is given by O(n(n− 1)/2). Upon initial

inspection, the similarity calculations can only be reduced if

ζ is increased in order to decrease n, which could result in a

quality loss. The inspection of the sliding window reveals



(a) (b)

(c)

Fig. 2. Application and benefit of the new structure element. Similarity computations for the CSS are shown in (a) and the structure element that is used
to accelerate the computations is visualized in (b). The current cell is marked with an cross, elements contained in the structure element are depicted as
plus-signs, and cells that are used for computation are marked with a circle. Extraction of the similarity computations from the new structure element is
illustrated in in (c).

M
is

s-
R

at
e
[%

]

InriaTest

False positives per image [No. ]

M
is

s-
R

at
e
[%

]

TudBrussels

False positives per image [No. ]

Fig. 3. Comparison of the HOG-based classification versus the HOG + CSS-based variant. The evaluation was performed on the INRIA (InriaTest) [1]
and the TudBrussels (TudBrussels) [13] datasets.



M
is

s-
R

at
e
[%

]

TudBrussels

False positives per image [No. ]

Fig. 4. A selection of some detection results and a comparison with other state-of-the-art approaches.

another possibility, which is to dissolve redundancies by

sophisticated precomputations.

Our approach works as follows. In the first place, the

whole image is divided into cells of size ζ×ζ. Our goal is

to compute all relevant similarities for all cells in advance.

The window size determines the region called support that

influences the feature of a single cell. For the example

from Fig. 2 (a) with a detection window of 3×4 cells, the

support is constructed as the structure element shown in

Fig. 2 (b). The support spx×spy w.r.t. the number of cells

of the detection window in x- and y-direction is defined as

spx = 2cx − 1 and spy = cy .

It is now possible to create a buffer for each cell of the

image that stores the support information (cf. the example

in Fig. 2 (b)). Fig. 2 (c) visualizes how all the similarities

displayed in Fig. 2 (a) can be extracted from this structure

element. The application of the structure element is possible

for all cell windows w.r.t. boundary treatment. Thus, the

computation of the histogram intersections no longer depends

on the number of windows wimg but on the number of cells

cimg: O
((

spxspy − cx
)

cimg

)

= O(2n cimg) It needs to be

taken into account that not for all the windows all histogram

intersection are calculated, but the buffer is read-out each

time, which in turn is square in n. The evaluation described

in the next chapter will reveal an acceleration of factor four

without any loss in quality. The memory complexity is given

as O((spxspy − cx) cimg), since for each cell, all similarities

to all other cells of the structure element are stored.

IV. EVALUATION

The evaluation of the implemented pedestrian detection

system follows the instructions of Dollar et al. [3] and uses

the proposed scripts to achieve a precise comparison with

existing detectors. Our ground truth consists of the images

from the InriaTest [1] and the TudBrussels [13] datasets.

InriaTest contains 288 images of varying size, illumination,

and scenery and is a loose collection of holiday photographs.

The 508 images of TudBrussels were gathered from a camera

mounted on a car driving through the city of Brussels. Both

image dataset are completely disjoint from the training data.

In order to determine if the rectangle surrounding a detected

pedestrian corresponds to the rectangle of a pedestrian anno-

tated in the ground truth, the PASCAL-criteria [25] is used.

The criteria states that two rectangles sufficiently overlap if

they share at least 50 % of their area, resulting in a true

positive (TP) matching between detection and ground truth.

Bounding boxes of detected pedestrians that fail this criteria

are classified as false positives (FP), vice versa as false

negatives (FN) for bounding boxes of the ground truth.

In case of multiple detected bounding boxes corresponding

to a single ground truth annotation, only the one with highest

decision value will be used while the others are classified as

FP. This in turn means that our approach has to conduct

a very effective non-maximum suppression to reduce the

impact of these false positives on the classification quality.

The quality of our detector is described by an evaluation

curve whose linear x-axis describes the false positives per

image and whose logarithmic y-axis encodes the miss-rate.

False positives per image are computed as (FP) / (#images)
and the miss-rate is defined as (FN) / (TP+FN). Fig. 3 shows

the results for HOG versus HOG + CSS classifiers on both

datasets. The key in the lower part shows the miss-rate at

10−1 false positives per image as reference point.

For our approach, a cell size of 6 of the HOG feature

yielded the best results. Linear SVMs have a single parameter

C which has a strong influence on the classification quality.

In this work, a C-value of 0.02 yielded the best results.

The cell size of the CSS feature is another parameter of

our classifier. For the experiments we used 8×8 pixels per

CSS cell. In this work, we observed that 2 retraining phases

(RT) mainly lead to convergence for the HOG feature alone

whereas the combination of features requires 7 retrainings.



TABLE I

COMPARISON OF THE DIFFERENT DETECTOR RUN-TIMES REFLECTING THE KEY FEATURE OF OUR APPROACH.

Detector Resolution
320×240 640×480 1280×960

µ σ fps µ σ fps µ σ fps

HOG-Dalal n. a. n. a. n. a. 4.1841s n. a. 0.239 18.519s n. a. 0.054

rhog8 0.176 s 0.007 s 5.691 0.939 s 0.023 s 1.065 4.166 s 0.094 s 0.240

rhog6 0.233 s 0.008 s 4.286 1.389 s 0.024 s 0.720 6.607 s 0.096 s 0.151

rhog6css8combo 1.500 s 0.008 s 0.667 13.886 s 0.027 s 0.072 78.986 s 0.106 s 0.013

rhog6css8-struct-combo 0.488 s 0.009 s 2.051 3.612 s 0.028 s 0.277 19.093 s 0.109 s 0.052

Each combination of parameters can be seen as a new

detector which is why the name of our classifier is formed

from these parameters as rhog6(HOG cell size)+css8(CSS

cell size)-C0.02(SVM C-value)+RT7(# retrainings). Our

classifier is compared to the state-of-the-art in Fig. 4.

The run-time of the system is evaluated one the

TudBrussels dataset (508 images, resolution 640×480) and

the result is shown in Table I. Since the run-time mainly

depends on the size of the images, we used the interpolated

sizes of 320× 240 and 1280× 960 as additional material.

The run-times include loading the data, the detection itself,

and the non-maximum suppression. A detailed description

of HOG-Dollar is available in [3]. The 2 variants rhog6 and

rhog8 represent the the feature with 6×6 and 8×8 pixels

per cell. HOG features combined with the CSS features

are represented by rhog6css8comb6 and rhog6css8-struct-

combo, where the latter is our variant with the new structure

element described in Sec. III-D. The values for HOG-Dollar

are taken from the original paper and the system used for

all other measurements is an Intel(R) Quad Core(TM) with

2.66 GHz and 8 GB RAM.

V. CONCLUSION

We presented our pedestrian detection approach for pedes-

trian detection in monocular images. In our work, we used

HOG features in combination with CSS features. The com-

bination of these features allows the integration of robust

color information into the established Histograms of Ori-

ented Gradients approach. Our evaluation reveals that the

combination of the HOG and the CSS feature results in an

improved detection quality. For the computation of the CSS

feature, we presented a new structure element that is able to

accelerate the computations by factor 4 without any influence

on the feature quality.

ACKNOWLEDGMENT

This work was partially funded under research contract PA

599/11-1 by the Deutsche Forschungsgemeinschaft (DFG).

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in Proc. of the CVPR, 2005, pp. 886–893.

[2] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New Features and
Insights for Pedestrian Detection,” in Proc. of the CVPR, 2010, pp.
1030–1037.

[3] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[4] C. Papageorgiou and T. Poggio, “A Trainable System for Object
Detection,” Int. Journal of Computer Vision, vol. 38, no. 1, pp. 15–33,
2000.

[5] V. Vapnick and C. Cortes, “Support-Vector Networks,” Machine

Learning, vol. 20, no. 3, pp. 273–297, 1995.
[6] P. A. Viola, M. J. Jones, and D. Snow, “Detecting Pedestrians Using

Patterns of Motion and Appearance,” in Proc. of the ICCV, 2003, pp.
734–741.

[7] P. A. Viola and M. J. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features,” in Proc. of the CVPR, 2011, pp. 511–
518.

[8] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization
of Online Learning and an Application to Boosting,” in Proc. of the

COLT, 1995, pp. 23–37.
[9] F. C. Crow, “Summed-Area Tables for Texture Mapping,” in Proc. of

the SIGGRAPH, 1984, pp. 207–212.
[10] V. Prisacariu and I. Reid, “fastHOG - a real-time GPU implementation

of HOG,” Department of Engineering Science, Oxford University,
Oxford, UK, Tech. Rep., 2009.

[11] N. Dalal, B. Triggs, and C. Schmid, “Human Detection Using Oriented
Histograms of Flow and Appearance,” in Proc. of the ECCV, 2006,
pp. 428–441.

[12] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow,”
Artificial Intelligence, vol. 17, no. 1-2, pp. 185–203, 1981.

[13] C. Wojek, S. Walk, and B. Schiele, “Multi-Cue Onboard Pedestrian
Detection,” in Proc. of the CVPR, 2009, pp. 794–801.

[14] S. Maji, A. C. Berg, and J. Malik, “Classification Using Intersection
Kernel Support Vector Machines is Efficient,” in Proc. of the CVPR,
2008, pp. 2245–2260.

[15] G. D. C. Cavalcanti, J. P. Magalhaes, R. M. Barreto, and T. I.
Ren, “MLPBoost: A Combined AdaBoost / Multi-Layer Perceptron
Network Approach for Face Detection,” in Proc. of the SMC, 2012,
pp. 2350–2353.

[16] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast Human
Detection Using a Cascade of Histograms of Oriented Gradients,” in
Proc. of the CVPR, 2006, pp. 1491–1498.

[17] F. Porikli, “Integral Histogram: A Fast Way To Extract Histograms in
Cartesian Spaces,” in Proc. of the CVPR, 2005, pp. 829–836.

[18] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral Channel
Features,” in Proc. of the BMVC, 2009, pp. 91.1–91.11.

[19] P. Dollar, S. Belongie, and P. Perona, “The Fastest Pedestrian Detector
in the West,” in Proc. of the BMVC, 2010, pp. 68.1–68.11.

[20] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part Based Models,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32,
no. 9, pp. 1627–1645, 2010.

[21] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward
Feature Space Analysis,” IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.
[22] C. Cortes and V. Vapnick, “Support-Vector Networks,” Machine

Learning, vol. 20, no. 3, pp. 273–297, 1995.
[23] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic

Press, 2009.
[24] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C. J. Lin,

“LIBLINEAR: A Library for Large Linear Classification,” Journal of

Machine Learning Research, vol. 9, no. 1, pp. 1871–1874, 2008.
[25] M. Everingham, L. J. Van Gool, C. K. I. Williams, J. M. Winn, and

A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Int. Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.


