
Preface

This volume contains papers presented at International Workshop on Meta-
Models and Schemas for Reverse Engineering (ateM 2003) that was held in
Victoria BC, Canada on November 13, 2003. This workshop was held as
part of the 10th International Working Conference on Reverse Engineering
(WCRE-03).

Motivation

The aim of this workshop was to explore the use of meta technology —
that is, meta-models and meta-programming techniques — for the develop-
ment of reverse engineering toolsets. In reverse engineering, meta-models, or
schemas, are at the core of any supporting tool; the schemas effectively de-
fine the internal (data) structure and specify the underlying semantic model
of various analysis services that the tool might provide. However, schemas
exist at different levels of detail (from AST to the architectural), model dif-
ferent programming languages and paradigms (procedural, object-oriented),
support different kinds of concerns (user interface, business logic, web ser-
vices) and lifecycle stages (requirements, design, maintenance). The lack of
generally accepted standards for schemas in reverse engineering has resulted
in a plethora of difficult and interesting research problems.

Workshop Issues

The ateM-2003 workshop aimed to build on previous work on themes re-
lated to the issues above, such as the 2000 Workshop on a Standard Ex-
change Format (WoSEF), Dagstuhl Seminar #01041 on Interoperability of
Re-engineering Tools, as well as recent research within the model-driven ar-
chitecture (MDA) community.

The program for ateM-2003 consisted of three sessions that concentrated
on paper presentations and ensuing discussions, plus a final discussion session

Electronic Notes in Theoretical Computer Science 94 (2004) 1–5

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.009

http://www.elsevier.com/locate/entcs


that elaborated on the various themes of interest that arose during the first
three sessions. The paper sessions were organized around three themes:

(i) Meta-models: talks by Tim Lethbridge (University of Ottawa) on The

Dagstuhl Middle Model: An Overview, Jens Knodel (IESE, Germany) on
A Meta-Model for Fact Extraction from Delphi Source Code, and Kenny
Wong (University of Alberta) on A GXL Metaschema for Story Diagrams.

(ii) Frameworks and exchange formats: talks by Ravindra Naik (Tata Con-
sulting, India) on A Programmable Analysis and Transformation Frame-

work for Reverse Engineering, Michael Blaha (OMT Associates) on Data

Store Models are Different than Data Interchange Models, and Abdelwa-
hab Hamou-Lhadj on The Compact Trace Format.

(iii) Meta-modelling technologies: Anthony Cox (Dalhousie University, Canada)
on Multi-Layered Data-Modelling, Kenny Wong on Issues in Integrating

Schemas for Reverse Engineering, and Yuan Lin (University of Waterloo,
Canada) on Formalizing Fact Extraction.

Each presenter was encouraged to contribute a question that they would like
the community to consider. These questions were collected, and used in the
design of the final discussion session.

Discussion session

The final discussion session, which was moderated by Andreas Winter
(University of Koblenz, Germany), elaborated on four themes of common in-
terest that arose during the preceding discussions: exchange formats; levels of
schemas; variants of schemas; and representation and definition of schemas.

1. Exchange Formats

Questions considered:

What should an exchange format look like? How useful is GXL? Given that
we have been considering this problem for a while, why has the it been so
hard to exchange schemas and analysis information?

Discussion:

It was generally agreed that program analysis data is often graph-like, and
that GXL is a good solution for storing XML-ised graph data. However,
there were several remarks that questioned and/or criticized the use of GXL
as an exchange format for schemas and analysis data. GXL was portrayed
by some as being too bloated and complex for easy use (largely because of
its basis in XML); GXL has been around for a few years now, but most of
its use has been to exchange simple data (in a single schema) rather than

Preface / Electronic Notes in Theoretical Computer Science 94 (2004) 1–52



allow data in different schemas to be exchanged. It was suggested that the
TA language or a MOF-based model might be preferable sometimes.

2. Levels of Schemas

Questions considered:

What kinds of schemas and meta-models are actually needed? What are
the relationships between schemas (sub- and supersets, variants, versions)?
How can tools accommodate, view, and integrate multiple schemas?

Discussion:

Tim Lethbridge (University of Ottawa, Canada) made several remarks about
the model of three plus one schema levels that came out of Dagstuhl Seminar
#01041 on Interoperability of Re-engineering Tools. The three-plus-one lev-
els are: architectural (high level design components and connectors), middle

(classes, files, functions, methods, fields, and their inter-relationships), and
code (AST information) plus data.

Lethbridge (who previously had led the effort to develop the Dagstuhl
middle-level model, or DMM, into a concrete meta-model) argued that the
DMM is probably the right taxonomy for reverse engineering schemas, but
that there are other kinds of useful schemas that do not easily fit into this
model, such as requirements models (e.g., business processes), specialized
analysis techniques (e.g., program dependence graphs, or PDGs, used in
program slicing analysis), and visualization languages. After some discus-
sion, it was concluded that these are more like orthogonal dimensions than
basic design layers (abstraction levels); each of them addressed a different
kind of concern about a software system and might indeed incorporate its
own hierarchy of levels. The dimension that the workshop was intended
to discuss was the design, or static structural dimension. There was some
discussion over the best term for this idea: dimension, domain, view, facet,
aspect were all suggested.

Ravinder Naik (Tata Consulting, India) was asked what kinds of models
they use for requirements; he replied that his group is usually concerned
with modelling business rules and business processes, but these are just

documents rather than formal and machine processable artifacts.

3. Variants of Schemas

Questions considered:

How to deal with slightly different schemas (dialects)? How to deal with
core schemas vs. variants of core schemas? How to create and represent
schema variants?

Preface / Electronic Notes in Theoretical Computer Science 94 (2004) 1–5 3



Discussion:

A variant of a schema is one that is very close to a core schema, but dif-
fers in some important way, such as how the GCC dialect of C might differ
from the ANSI standard. Andreas Winter (University of Koblenz, Ger-
many) suggested that a core model with broad appeal can be identified,
and then variants can be defined in terms of their differences to it. Several
others commented that it is important to have a clear and explicit model of
such variants, such as a formal model using UML’s Object Constraint Lan-
guage (OCL) or some other machine-checkable mechanism. Winter made
the concluding remark that our community has learned the hard lesson that
extraction and analysis tools need to be based on explicitly defined schemas.

4. Representation and Definition of Schemas

Questions considered:

How to represent or store schemas for multiple view use? How to validate
schemas?

Discussion:

Andreas Winter (University of Koblenz, Germany) stated that our com-
munity needs a reliable, prescriptive methodology for schema definition; he
wondered if the database community could help us. Michael Blaha (OMT
Associates) stated that this plus schema migration or transformation are
well known problems in the database community; they are well known and
well studied, but there are no general purpose overriding solutions.

Winter asked about how to visualize the schemas, GXL uses a subset of
UML object diagrams, stored in XMI. It’s a challenging question without
an obvious easy solution; complexity and detail-level are problems. Blaha
strongly recommended the investigation of OCL as being possibly useful
here. We said that relative to UML (designed by committee by putting ev-

eryone’s favourite ideas into one big basket), the OCL is relatively coherent
and well thought out.

Workshop Organization and Acknowledgments

The workshop was organized by Andreas Winter (University of Koblenz,
Germany), Jean-Marie Favre (University of Grenoble, France), and Michael
Godfrey (University of Waterloo, Canada).

We, the organizers, would like to thank the program committee who re-
viewed the submissions and provided useful feedback to the authors:

• Stphane Ducasse, University of Berne, Switzerland

• Jens Jahnke, University of Victoria, Canada

Preface / Electronic Notes in Theoretical Computer Science 94 (2004) 1–54



• Timothy C. Lethbridge, University of Ottawa, Canada

• Mark Minas, Univ. of the Federal Armed Forces, Munich, Germany

• Leon Moonen, Delft University of Technology, CWI, The Netherlands

• Juha-Pekka Tolvanen, MetaCase, Jyvaskyla, Finland

• Susan Elliott Sim, University of California, Irvine, U.S.A.

• Tarja Systa, Tampere University of Technology, Finland

We would also like to thank the organizers and program chairs of WCRE-
03: Elliot Chikovsky, Peggy Storey, Ari van Deursen, Eleni Stroulia, Ladan
Tahvildari, Victor Chong, and Ian Bull. We would also like to thank Michael
Mislove for agreeing to publish the ateM 2003 post-proceedings in Elsevier
Electronic Notes in Theoretical Computer Science.

Jean-Marie Favre

University of Grenoble, France

Mike Godfrey

University of Waterloo, Canada

Andreas Winter

University of Koblenz-Landau, Germany

January, 2004

Preface / Electronic Notes in Theoretical Computer Science 94 (2004) 1–5 5


