
GXL2SVG: Domain-Specific Graph Layout
Florian Schricker Volker Riediger

Universität Koblenz-Landau
Institute for Software-Technology

P. O. Box 20 16 02, D-56016 Koblenz
(eyerq|riediger)@uni-koblenz.de

Andreas Winter
Johannes Gutenberg-Universität Mainz

Institute for Computer Science
Staudingerweg 9, D-55128 Mainz

winter@uni-mainz.de

Abstract
GXL provides an international standard to exchange graphs and
their according schemas, but without offering means to visualize
these structures. This paper presents a declarative approach to
specify a graph layout by referring to the graphs schema. Us-
ing GReQL graph querying technology, the resulting display of
graph elements can be influenced by various graph properties.
The graph visualizerGXL2SVGuses standard graph layout ser-
vices and exports graphs as SVG documents.

1 Introduction

Graphs are widely used to represent software systems in
software engineering. They provide a well defined the
mathematical basis to reason on program structures. Anal-
ysis of graph data structures can be done efficiently, and
visualizations of graphs are easily understood by various
stakeholders in the software development process.

Adequate visualization of graphs strongly depends on
the modelling domain the graph is applied in and is often
dependent on the information in the graph and the graph
structure itself. Using the standardized GXL Graph Ex-
change Language[4], the domain specific structure of the
graph is represented by GXL schemas.Domain-specific
layout of graphscan be specified with respect to these
schemas.Graph propertiesmight also influence the lay-
out of graphs. For example, CodeCrawler [1] uses colors,
shapes, and sizes of nodes to represent metrics in syntax
graphs. All of these layout parameters can be calculated
using graph queries[7].

In this paper, we present an approach to specify the
layout of graphs with respect to their graph schemas and
graph properties. The calculation of graph properties fol-
lows the GReQL graph querying approach [6]. The graph
visualizerGXL2SVG[8] imports GXL graphs and alayout
specificationreferring to the appropriate graph schema.

Using the layout facilities provided by the GraphViz
library[3], GXL2SVGexports domain specific graph visu-
alizations as Scalable Vector Graphics (SVG)[10].

v1: EntityType
name : Entity
abstract : 1

v2: RelationshipType
name : Relationship

v3: BasicDomain
name : INTEGER

v5: BasicDomain
name : STRING

v6: BasicDomain
name : BOOL

v7: EntityType
name : Junction

abstract : 0

v9: Attribute
name : name

v11: Attribute
name : isRoundAbout

v10: EntityType
name : Way
abstract : 1

v12: Attribute
name : name

v14: Attribute
name : length

v13: EntityType
name : Street
abstract : 0

v15: EntityType
name : Footpath

abstract : 0
v8: RelationshipType
name : hasAsOrigin

v17: RelationshipType
name : hasAsTarget

goesTocomesFrom

hasDomain hasDomain

hasAttributehasAttributeeIsA

hasDomainhasDomain

hasAttribute hasAttribute eIsA

eIsA

eIsA

eIsA

eIsA

rIsAcomesFrom goesTo rIsAcomesFrom goesTo

Figure 1: An example graph

2 GXL2SVGLayout Features

The following section introduces some of the layout fea-
tures provided byGXL2SVG. Fig. 1 shows a small example
graph. Most nodes are represented by ellipses with textual
information on node types and names, some of the nodes
are rendered as grey rectangles with different content.

GXL2SVGuses an XML language for the specification
of graph layout properties. The visualization of the ellip-
tical nodes in Fig.1 is specified in Fig. 2. Lines 5 and 6
define the shape, and lines 8-11 specify the node labels
consisting of certain literal strings and graph attribute val-
ues.

1 <GSIFunctionApplication
2 function="VertexLayoutProperties">
3 <Result><Set>
4 <Tuple>
5 <Name>VertexStyle< /Name>
6 <GreqlText>’ellipse’< /GreqlText></Tuple>
7 <Tuple>
8 <Name>Label< /Name>
9 <GreqlText>USING v: ’v’ + vertexId(v)

10 + ’: ’ + typeName(v) + ’\n name : ’
11 + v.name< /GreqlText></Tuple>
12 </Set></Result>
13 </GSIFunctionApplication>

Figure 2: Layout specification for ellipse nodes

Fig. 3 shows the layout specification for the rectangu-
lar nodes. This specification only holds forEntityType-
nodes (line 4). Graphs with nodes to be visualized with
this style have to match a schema containingEntityType-
nodes. Shape (rectangle) and background color (172 =
grey) refering toGXL2SVG’s default color palette are de-
fined in lines 6-12. The GReQL-Query in lines 15-16 cal-
culates the width of each rectangle depicting aEntityType-
nodev depending on the number of incomming edges (in-
Degree(v)).

Analogously to the layout of the nodes, the layout of
edges is specified. Fig. 1 uses thick dotted and thin solid
edges. The placement of the nodes follows a hierarchical
layout approach suitable for tree-like structures [9].

GXL2SVGoffers means to manipulate graph layout on
three levels.Global propertiesdeal with the general layout
of all nodes and edges, independent of specific structures
or attribute values.Schema-related propertiesfocus on the
visualization on graph elements of certain node and edges
types specified in the schema. Finally,instance-related
propertiesdetermine the illustration of a specific nodes or
edges. The more specialized levels overwrites the property
values of the more general levels.

Three general graph layout approaches – hierarchi-
cal, force-directed, and radial [2] – are supported by

(eyerq|riediger)@uni-koblenz.de
winter@uni-mainz.de


1 <GSIFunctionApplication
2 function="VertexLayoutProperties">
3 <Parameter>
4 <TypeId>EntityType< /TypeId></Parameter>
5 <Result><Set>
6 <Tuple>
7 <Name>VertexStyle< /Name>
8 <GreqlText>’rectangle’< /GreqlText></Tuple>
9 <Tuple>

10 <Name>BackgroundColor< /Name>
11 <GreqlText>
12 TUP(’default’,172)< /GreqlText></Tuple>
13 <Tuple>
14 <Name>Width< /Name>
15 <GreqlText>USING v:
16 inDegree{}(v) * 20 + 50< /GreqlText></Tuple>
17 . . .
18 </Set></Result>
19 </GSIFunctionApplication>

Figure 3: Layout specification forEntityType-nodes

GXL2SVG, so far. Additionally, the manipulation of prop-
erties like size, color, shape, line style, edge end sym-
bols, node and edge labels, fonts, fontsizes etc., which
are not covered by the general layout algorithm itself, can
be defined inGXL2SVGlayout specifications. All layout
properties have distinctive names and an appropriate value.
The value is always computed by a GReQL query. Such
queries can easily gather information which is spread over
the complete graph. Thus, each layout porperty value can
depend on arbitrary graph properties.

Junction

isRoundAbout : BOOL
name : STRING

Way

length : INTEGER
name : STRING

Street

Footpath

hasAsOrigin

hasAsTarget

Figure 4: Graph from Fig: 1 layouted as class diagram

Fig. 4 shows an example of the power and expressive-
ness ofGXL2SVGlayouts. The graph in Fig. 1 is de-
picted in thedomain of class diagramsusing an UML-
like visualization style. Information displayed in the class
nodes is collected from various surroundingEntityType,
Attribute, and Domain nodes. Different end symbols of
edges distinguish generalization from association edges,
whereas different shades help telling the abstract class
(Way) from concrete ones. Graph layout follows a force
directed approach[5].

Using the UML related domain specific layout in Fig. 4
provides a much easier understanding of the graph in
Fig. 1. It represents a partial schema for city maps.

3 Implementation

GXL2SVG’s core functionality is implemented as a C++
library. The main objective in development was separation
of graph representation, layout specification, output gener-
ation, and graph layout algorithm.

LayoutSpec LayoutGraph Writer

Interface for
visualizers

gxl2svg library GXL2SVG

GV_LayoutGraph SVGWriter

Interface for
layout algorithms

Figure 5: GXL2SVG library structure

This resulted in the modular design shown in fig. 5,
where the layout algorithm is only used to compute po-
sitions and sizes of nodes and the routing of edges. This
results in a specific layout graph which is then rendered by
an output writer into the final destination format.

4 Conclusion
GXL2SVGprovides a declarative specification of graph
layout. By referring to the graph schema, these layout
specifications provide domain specific rendering of graphs.
GReQL queries are used to influence the graph layout by
arbitrary graph properties.

The approach presented in this paper is based on stan-
dardized open formats like GXL and SVG. Unless its cur-
rent implementation only uses GraphViz layout services,
the implementation can easily be extended and optimized
by other graph layout algorithms.

Further work will supply a predefined set of domain
specific layout specifications and offer an interactive user
interface to support the definition of layouts by extending
graph schemas.

References
[1] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse Engi-

neering Approach Combining metrics and program visualization.
In 6th Working Conference on Reverse Engineering. IEEE Com-
puter Society, Los Alamitos, 175–186. 1999.

[2] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph
Drawing, Algorithms for the Vizualization of Graphs. Prentice
Hall, Upper Saddle River, 1999.

[3] GraphViz - Graph Visualization Software. http://www.
graphiz.org , (30.03.2006).

[4] R. C. Holt, A. Schürr, S. Elliott Sim, and A. Winter. GXL: A
Graph-Based Standard Exchange Format for Reengineering.Sci-
ence of Computer Programming, 60(2):149–170, April 2006.

[5] T. Kamada and S. Kawai. An Algorithm for Drawing General Un-
directed Graphs.Information Processing Letters, 31:7–15, 1989.

[6] M. Kamp and B. Kullbach. GReQL - Eine Anfragesprache für das
GUPRO–Repository, Sprachbeschreibung. Projektbericht 8/2001,
Universität Koblenz-Landau, August 2001.

[7] B. Kullbach and A. Winter. Querying as an Enabling Technology
in Software Reengineering. In P. Nesi and C. Verhoef, ed.3nd Eu-
ropean Conference on Software Maintenance and Reengineering.
IEEE Computer Society, Los Alamitos, 42–50. 1999.

[8] F. Schricker. GXL2SVG - Visualisierung von Graphen in SVG.
Studienarbeit, Universität Koblenz-Landau, Fachbereich Infor-
matik, Koblenz, Dezember 2005.

[9] K. Sugiyama, S. Tagawa, and T. Toda. Methods for Visual Under-
standing of Hierarchical Systems.IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125, 1981.

[10] Scalable Vector Graphics (SVG) 1.1 Specification.http://

www.w3.org/TR/2003/REC-SVG11-20030114/ , 14 Jan-

uary 2003.

http://www.graphiz.org
http://www.graphiz.org
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/

	Introduction
	GXL2SVG Layout Features
	Implementation
	Conclusion

