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Abstract. As an emerging solution to the handling of complex and evolving 
software systems, Model Driven Engineering (MDE) is still very much in 
evolution. The industrial demand is quite high while the research answer for a 
sound set of foundation principles is still far from being stabilized. Therefore it 
is important to provide a current state of the art in MDE, describing what its 
origins are, what its present state is, and where it seems to be presently leading. 
One important question is how MDE relates to other contemporary 
technologies. This tutorial proposes the "technical space" concept to this 
purpose. The two main objectives are to present first the basic MDE principles 
and second how these principles may be mapped onto modern platform support. 
Other issues that will be discussed are the applicability of these ideas, concepts, 
and tools to solve current practical problems. Various organizations and 
companies (OMG, IBM, Microsoft, etc.) are currently proposing several 
environments claiming to support MDE. Among these, the OMG MDA™ 
(Model Driven Architecture) has a special place since it was historically one of 
the original proposals in this area. This work focuses on the identification of 
basic MDE principles, practical characteristics of MDE (direct representation, 
automation, and open standards), original MDE scenarios, and discussions of 
suitable tools and methods. 
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1   Introduction 

In November 2000 [32] the OMG proposed a new approach to interoperability named 
MDA™ (Model-Driven Architecture). MDA is one example of the broader Model 
Driven Engineering (MDE) vision, encompassing many popular current research 
trends related to generative and transformational techniques in software engineering, 
system engineering, or data engineering [6], [11]. Considering models as first class 
entities and any software artifact as a model or as a model element is one of the basic 
principles of MDE. The key ideas of MDE are germane to many other approaches 
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such as domain specific languages (DSLs), software factories, model-integrated 
computing (MIC), model-driven software development (MDSD), model management, 
language-oriented programming and much more. The OMG MDA initial proposal 
may be defined as the realization of MDE principles around a set of OMG standards 
like MOF, XMI, OCL, UML, CWM, and SPEM. Most of these acronyms will be 
referenced later in the document. Their important number is due to the initial 
normative aspect of the field. A list of some common ones is provided in an appendix. 

 

Fig. 1. The three IBM manifesto tenets 

The IBM manifesto [15] makes the claim that MDA-based approaches are founded 
on three ideas: Direct representation, Automation and Standards. Direct representation 
allows a more direct coupling of problems to solutions with the help of Domains 
Specific Languages (DSLs). Automations means that the facets represented in these 
DSLs are intended to be processed by computer-based tools to bridge the semantic 
gap between domain concepts and implementation technologies and not only for mere 
documentation. This should be complemented by the use of open standards that will 
allow technical solutions to interoperate. These three complementary ideas are central 
to the development of MDE approaches. Models should be exchangeable and for this 
we need to agree on consensual standards. Many models would however need to be 
written by human agents, very often non computer scientist agents. In this case, these 
models (or programs) will be written in domain specific languages, restricted in size 
and precisely defined. The mapping of these models written in precise DSLs onto 
operational technology by using generative and transformational techniques is one 
important aspect of MDE. Another major issue is to solve the fragmentation problem 
resulting from the coexistence of a high number of small DSLs. The answer to this 
problem is the existence of a global representation system (for example the MOF 
OMG M3 level), and the support of libraries of various correspondences between 
models (e.g. transformation or weavings). However this is not sufficient and we need 
also to invent registries and global links between entities like models and metamodels 
to escape fragmentation problems. 
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Historically in year 2000, the MDA had a specific goal: preserving the IT 
investments of companies through the constant and rapid evolution of platforms. At 
that time the middleware and the component solutions alone were no more in a 
position to achieve this goal. The proposal was thus to capture in PIMs (Platform 
Independent Models) the part of the investment that should not be affected by major 
or minor changes in platforms. The idea was then that it should be possible, by some 
means, to generate PSMs (Platform Specific Models) from these PIMs. How this 
problem could be concretely solved was not completely clear at the time. The main 
idea was that a PIM could be expressed in UML and that, through the supposedly 
stability of UML versions in time, the corresponding assets could be preserved over 
long periods. The concrete means to generate PSMs from PIMs were not precisely 
stated at the time since the number of such target platforms was rather limited and 
similar (mainly CORBA, J2EE/EJB and DotNet). The scope of these target platforms 
was then broadened, the notion of models (including PIMs and PSMs) was extended 
beyond mere UML models, and the generation of PSMs from PIMs was suggested to 
be automated by model transformations using the newly defined QVT standard [29]. 

More than five years after, the situation has much evolved. Separating platform 
dependent from platform independent aspects is no more seen as the unique goal. The 
major problem is now the separation and combination of concerns in the construction 
and maintenance of information systems. Among these concerns, platform dependent 
and independent aspects remains important in the agenda, but these are more and 
more considered as a special case of a general problem including for example 
separation of functional and non-functional requirements. MDA and DSL solutions 
are now more and more closely related. What MDA is bringing to DSLs is this idea of 
using a collection of metamodels to capture the various facets of a system under 
construction or under maintenance. What DSLs is bringing to MDA is that a unique 
general purpose language, even a very large one like UML 2.0, is not able and will 
never be able to capture all the needs of the designers, administrators, and users of a 
given system. 

The notion of direct representation [15] is very important. This means that instead 
of performing themselves directly certain tasks in general purpose languages like 
Java, computer scientists may instead concentrate on defining specialized languages 
and handling these to final users that will be able to express precisely their 
contributions in these languages in a non-ambiguous manner. The computer scientists 
will be in charge of mapping these contributed expressions (often of a declarative 
nature) into executable structures i.e. target platforms. We recognize here the 
common objective of MDA and DSLs. But a DSL may address a lot of needs, 
corporate or organizational for example. A typical DSL, that has been very successful 
for a long time, is Excel that addressed in early stages, with products like VisiCalc, 
the domain needs of basic accounting. Excel is now an example of a language defined 
by computer specialists to solve the problems of non specialists. Using such tools, 
many tasks may be solved now by non-specialists, without the help of specialists that 
are becoming more and more language engineers. The form of these languages may 
vary in their concrete appearance and they could be defined by conventional 
grammars, by DTDs or XML schemas, by ontologies, by graphical representation or 
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by metamodels. One central contribution of MDE is about the possible expression of 
DSLs by metamodels. 

The three tenets mentioned in the IBM manifesto are essential to MDE. However, 
to make it practical we need to extend this definition in two directions First we need 
to build MDE on a sound set of principles. Next we need to implement MDE on 
practical platforms of wide usage. We propose an initial set of kernel principles that 
could serve as a proposal for a foundational set of principles. We also suggest an 
architectural style that could be used as a guide to implement these principles on 
current industrial platforms.  

 

Fig. 2. Principles, Standards, and Tools 

This text proposes some ideas on the present rapid evolution of the MDE scene. 
The basic set of MDE principles is based on two concepts (system and model) and 
two basic relations (conformance and representation). This allows giving a first 
definition of what is a model in the MDE context. In another section we propose to 
situate MDE with respect to other possible solutions. Our organization of the solution 
space is based on the notion of "technical space". This will help us to give an 
extended definition, more general and precise, of what is a model. In the rest of the 
document we come back to the strict MDE technical space. We also propose an initial 
inventory of possible operations on models. Model transformation will obviously be 
one important example of an operation on models. The consequences of a 
transformation being itself considered as a model will be much emphasized. We also 
propose an architectural style for implementing an MDE platform respecting the basic 
principles. This will be given in the form of an abstract architecture composed of four 
complementary functional blocks addressing the issues of model transformation, 
model weaving, global model management, and model projection onto other spaces. 
As an illustration of this architectural style, we will present the AMMA prototype [1] 
available in the Eclipse GMT project [19]. 
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2   Basic MDE Principles 

2.1   Prerequisites 

In order to discuss the broad view of MDE, we need a suitable common notation. 
Among many possibilities, we use the now conventional UML class diagrams and the 
Object Constraint Language. UML and OCL do not bring new expressive power to 
MDE, but they are standards (OMG standards) that may facilitate interoperability of 
solutions and common understanding. 

2.2   Introduction 

A model is a complex structure that represents a design artifact such as a relational 
schema, an interface definition (API), an XML schema, a semantic network, a UML 
model or a hypermedia document [4]. In the present section we will give a more 
limited definition of a model, in the context of MDE only, as a graph-based structure 
representing some aspects of a given system and conforming to the definition of 
another graph called a metamodel. As we shall see later there are several contextual 
and complementary definitions of what a model is. We are not interested here by a 
theoretical definition of a model, but by an engineering one, i.e. a definition that will 
help users to implement and maintain systems. The parallel between object 
technology and model engineering that was made in [7] may be relevant here. The 
definition of an "object" that was given by pioneers like Dahl, Nygaard, Kay, Meyer 
and others had nothing to do with philosophy but this was an engineering definition 
that is still of high interest to the profession today. Similarly we are presently looking 
for an operational engineering definition of a "model" that could play a similar role in 
the coming period. 

2.3   Basic Entities 

The present trend in model engineering [7] is to consider that models are first class 
citizens. This approach seems to be the only possibility to deal with ever-increasing 
complexity in information and software systems. It will hopefully allow to separate 
and to combine different aspects in a more regular way. Among these aspects we may 
mention platform dependent and independent features. As a corollary of this principle 
stating “that everything is a model”, we may infer for example that “a model 
transformation should also be considered as a model”. The basic principle and its 
corollaries build the foundation of third generation model transformation frameworks. 
However there is still an important amount of work to be done before fully 
understanding MDE environments and putting them to work.  

In [31], Ed Seidewitz writes: “…In any case, without this well-grounded foundation, 
our models are, in the end, just pictures that don’t really mean anything at all…” 

Models are now commonly used to provide representation of real-world situations. 
A model is said to represent a system. Fig. 3 provides an example of a relational model 
that defines a possible representation for a set of books in a library. On the right side of 
Fig. 3, we have a relational representation of part of the world (a library). Other 
different representations of this same library are possible, e.g. an event-based 
representation capturing book creation, lending, returning, destruction, etc. 
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… …… …… ……… ……

Relational Model

Book  

Fig. 3. The "representation" relation between a system and a model 

Each model is defined in conformance to a metamodel. Metamodels define 
languages enabling to express models. A metamodel describes the various kinds of 
contained model elements, and the way they are arranged, related, and constrained. A 
model is said to conform to its metamodel. Thus, our Book relational model conforms 
to the relational metamodel (Fig. 4). Representation and conformance relations are 
central to model engineering [7]. 
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Fig. 4. The "conformance" relation between a model and its metamodel 

As models, metamodels are also composed of elements. Metamodel elements 
provide a typing scheme for models elements. This typing is expressed by the meta 
relation between a model element and its metaelement (from the metamodel). We also  
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Fig. 5. The "meta" relation between model and metamodel elements 
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say that a model element is typed by its metaelement. A model conforms to a 
metamodel if and only if each model element has its metaelement defined within the 
metamodel. Fig. 5 makes explicit some of the meta relations between Book model 
elements and relational metamodel elements: the Book element is typed by the Table 
metaelement, BookId and Title are typed by the Column metaelement, and String is 
typed by the Type metaelement. 

The growing number of metamodels has emphasized the need for an integration 
framework for all available metamodels by providing a new item, the 
metametamodel, dedicated to the definition of metamodels. In the same way models 
are defined in conformance with their metamodel, metamodels are defined by means 
of the metametamodel language. A metamodel is said to conform to the 
metametamodel. As an example, we can consider the MOF (Meta-Object Facility), 
which is the OMG proposal for metamodels definition [28]. The relational metamodel 
may conform to the MOF metametamodel. 
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Fig. 6. The "meta" relation between M2 and M3 

As models and metamodels, the metametamodel is also composed of elements. A 
metamodel conforms to the metametamodel if and only if each of its elements has its 
metaelement defined in the metametamodel. Some meta relations between relational 
metamodel elements and MOF elements are made explicit in Fig. 6. Thus, the Table, 
Column, and Type elements are typed by the MOF Class element, whereas relational 
links elements are associated with the MOF Association element. 

2.4   Extensions 

The previous characterization of MDE principles given above is minimal. It does not 
cover all aspects necessary for a workable definition. Other relations between 
metamodels like a clean and precise "extension" relation may be necessary. One 
reason this has not been completely and consensually defined is that there are ways to 
solve this problem when you use specific metamodels like UML. The notion of 
profile for example allows some kind of extensibility in this context. 
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2.5   Structuring Metamodels 

Before engaging in the following section about comparing technologies, we see here 
that the strong concept in model engineering is the concept of a metamodel. As a 
consequence a metamodel brings engineering facilities different from grammars, XML 
schemas, ontologies, etc. Even if the notion of metamodel is still evolving in structure 
and application, we can say that a metamodel helps defining a language (DSL). This 
covers however a lot of different facets, some of them being described below. 

Basically, as we have seen, a metamodel is a graph composed of concepts and 
relationships between these concepts. From a usage perspective, a metamodel is a 
concrete representation of a shared conceptualization. Some of these conceptualize-
tions may be normative (e.g. OMG) and some are not. A metamodel acts as a filter to 
extract pertinent elements from a system in order to build a corresponding model. 
Any feature (concept or relationship) not present in the metamodel will be ignored 
when building the model representing the system. 

Metamodels are used to define formalisms or languages (DSLs). To define a 
formalism, we may need to provide different kind of information for example 
structure knowledge, assertion knowledge, execution knowledge, display knowledge, 
etc. The fact that these information are provided by separate parts of a metamodel 
contribute to a clear separation of concerns. The fact that they are provided by 
separate metamodel parts combined together goes one step beyond in the direction of 
modularity and reusability. 

Let us consider for example a classical PetriNet formalism. A Petri net is a 
bipartite directed graph with two kinds of nodes: Places and Transitions. It is an edge-
labeled and node-labeled graph. A number of Tokens may be associated to each 
Place. We may define a Petri Net in four steps: 

- The structural knowledge may be captured by a class diagram with concepts of 
Pnet (the global graph), Place, Transition, Token and relations basicRelation and 
numberOfToken. 

- The assertional knowledge may be captured by OCL descriptions stating that the 
value attribute of Token may never be negative and that a basicRelation may link a 
Place to a Transition or a Transition to a Place but never a Place to a Place or a 
Transition to a Transition.  

- The execution knowledge may be captured by the following description: 
function fireable (t:Transition) 

{return true if every directly incoming Place has at least one Token else false} 
context Pnet action; 

repeat 
select from pNet one arbitrary Transition t such that fireable(t); 
decrement the number of tokens for every incoming Place of t; 
increment the number of tokens for every outcoming Place of t; 

until no Transition t in pNet verifies fireable(t); 
- The display knowledge may be captured by the following description: 

• represent a Transition by a Rectangle 
• represent a Place by a Circle 
• represent an Edge by an Arrow 
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Now we may see in this description that any part is based on a separate metamodel 
for example the OCL metamodel or the AS (Action Semantics) metamodel or a 
drawing metamodel composed of concepts Arrow, Circle or a Rectangle. So the 
formalism of Petri Nets is defined not by a single but by an aggregation of 
metamodels. This way of “decorating” a model with another one based on a different 
metamodel is quite powerful and goes beyond the classical distinction between 
abstract and concrete syntaxes. It allows achieving separation of contents from 
presentation. If we wish to define an extension to Petri nets, for example colored Petri 
nets, then reusability may be achieved thanks to this clean separation. 

We just mentioned in this example that a model may be decorated with assertions 
to make it more precise, but that it may also be decorated with execution annotations 
to provide it with some animation capabilities (e.g. simulation but not only). Models 
are not naturally executable, but by using some available language with precisely 
defined execution semantics, it is possible to animate them. In [5] the language to 
write execution annotations was Smalltalk but variants of Java have also been used. 
The OMG invest efforts in trying to standardize action semantics for UML or even for 
MOF. 

A more regular definition of a DSL may be given as a coordinated set of models. 
Among these, a central domain metamodel would define the central concepts like 
Place, Transition or Token in the example above. Most of the other models will be 
correspondence or transformation models mapping the domain metamodel onto other 
DSLs, in order to provide various concrete syntaxes, to define executability or other 
properties. This external way to define executability by a mapping to another 
executable language (like Java for example) is very general. 

2.6   Summary 

The basic assumption in MDE is the consideration of models as first class entities. A 
model is an artifact that conforms to a metamodel and that represents a given aspect 
of a system. These relations of conformance and representation are central to model 
engineering [7]. A model is composed of model elements and conforms to a unique 
metamodel. This metamodel describes the various kinds of contained model elements 
and the way they are arranged, related, and constrained. A language intended to 
define metamodels and models is called a metametamodel. Models may be decorated 
in various ways in order to associate additional properties. The declaration itself is a 
model, i.e. conforms to a metamodel. The precise mechanisms for composing the 
various models are not yet completely understood. 

3   Engineering: Structuring the Solution Space 

Technical spaces were introduced in [24], in the discussion on problems of bridging 
different technologies. A technical space is a working context with a set of associated 
concepts, body of knowledge, tools, required skills, and possibilities. It is also a 
model management framework usually based on some algebraic structures like trees, 
graphs, hypergraphs, categories, etc. Although technical spaces may be difficult to 
define formally, they can be easily recognized (e.g. XML, MDA). In the three-level 
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conjecture, each technical space can be seen as based on a metametamodel (explicit or 
implicit) and a collection of metamodels. For the OMG/MDA the MOF and the 
collection of standard metamodels and UML profiles play this role.  

 

Fig. 7. Systems, models and technical spaces 

As illustrated in Fig. 7, the basic notions that we consider are now Systems, 
Models and Technical Spaces (abbreviated TSs). When we talk about a model, we 
should say which kind of model we are referring to. For example we could say that an 
XML-document is an XML-model or that a Java program is a Java-model. Proceeding 
in that way saves a lot of time by solving a lot of endless discussions about a Java 
program being or not being a model. The notion of model is a contextual one and to 
be non-ambiguous we need to prefix the model by its context. A TS denotes such a 
notion of a context. To take once again the object analogy, Smalltalk objects, Eiffel 
objects and C++ objects were different kinds of objects, not even able to 
communicate directly in the absence of some kind of Middleware support like 
CORBA. However Smalltalk programmers were used to talk about objects in their 
particular context. Similarly a MDA-model is a model that conforms to a metamodel 
that conforms to the MOF. When the context is clear, we may talk about a model, 
often meaning here MDA-model. Such a model will have specific properties, i.e. 
being able to be serialized in the XMI 2.1 format. When we talk about a 
Microsoft/DSL-model like in Fig. 8, this will be a different kind of model, not based 
on the MOF or directly serializable in XMI [30]. We may generalize this prefixing 
convention when we have to talk about models pertaining to different TSs. If we 
consider TSs that are organized according to the three level conjecture, we may even 
talk about a Java program as EBNF/Java/myProg or about an XML document as 
XML/MusicML/myMusic as naturally as we could talk above ECORE/UML2.0/ 
myModel or about MOF2.0/CWM/MyData.  

Several TSs may thus be considered as based on a three level organization like the 
metametamodel, metamodel and model of the MDA. One example is grammarware 
[23] with EBNF, grammars and programs but we could also consider XML 
documents, RDF documents, Semantic Web, DBMS, ontology engineering, natural 
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Fig. 8. Two MDE Technical Spaces 

language processing systems, etc. In order to get a synergy of different technical 
spaces we should create conceptual and operational bridges between them, and some 
of these bridges are bi-directional.  

The main role of the M3-level in a TS is to define the representation structure and a 
global typing system for underlying levels. The MOF for example is based on some 
kind of non-directed graphs where nodes are classes and links are associations. The 
notion of "association end" plays an important role in this representation system. 
Within the grammarware space we have the specific representation of abstract syntax 
trees while within the XML document space we also have trees, but with very 
different set of constraints, for example with possibilities to have direct references 
from one node to another node (REFs and IDREFs). In Fig. 9 we see how a simple 
system may be represented as an XML document corresponding to a Petri Net XML 
schema. We represent in this figure the conformsTo relation between the document, 
the schema, and the schema definition. We also represent the fine grained meta 
relations presented earlier (section 2) between elements and metaelements. 

As we can see, there are a lot of similarities between the XML TS and the MDA 
TS. To get even more convinced, we may compare this situation with a similar one 
expressed in the MDE TS. Here, in Fig. 10, we have chosen another specific variant 
of MDE called sNets based on typed, reflective, and partitioned semantic networks 
[8], [9]. 

Associated to the basic representation system, there is a need to offer a navigation 
language. For MDA the language that plays this role is OCL, based on the specific 
nature of MDA models and metamodels. OCL for example know how to handle 
association ends. For the XML document space, the corresponding navigation 
notation is XPath that takes into account the specific nature of XML trees. As a matter 
of fact OCL is more than a navigation language and also serves as an assertion 
language as we have seen earlier and may be even used as a side-effect free 
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Fig. 9. Three level structure in an XML TS 

programming language for making requests on models and metamodels. At the M3-
level when the representation system and corresponding navigation and assertion 
notations are defined, there are also several other domain-independent facilities that 
need to be provided. In MDA for example generic conversion bridges and protocols 
are defined for communication with other technical spaces: 

 XMI (XML Model Interchange) for bridging with the XML space 
 JMI (Java Model Interchange) for bridging with the Java space 
 CMI (CORBA Model Interchange) for bridging with the CORBA space  

Obviously these facilities may evolve and provide more capabilities to the MDA 
TS. We may even see many other domain-independent possibilities being available at 
the M3-level like general repositories for storing and retrieving any kind of model or 
metamodel, with different access modes and protocol (streamed, by element 
navigation, event-based, transaction based, with versioning, etc.). 

We see here the high potential impact of considering these technical spaces as 
explicit and semi-formal entities. In most of these spaces we have internal 
transformation tools (e.g. XSLT and XQuery for XML, QVT for MDA, etc.). Some of 
these internal transformation tools are general and other are specialized (a compiler 
can be seen as a specialized transformation tool of the EBNF/Grammarware space). 
These transformation tools have evolved in their own context to fit with specific 
objectives and main representation system of the corresponding space. There is no 
reason to change that. Now we have to consider another kind of transformation: 
across technical space boundaries. We call these transformations "projectors" in order 
to distinguish them from other transformations internal to one technical space. 
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Fig. 10. Three level structure in the sNet MDE TS 

The responsibility to build projectors lies in one space. The rationale to define 
them is quite simple: when one facility is available in another space and that building 
it in a given space is economically too costly, then the decision may be taken to build 
a projector in that given space. There are two kinds of projectors according to the 
direction: injectors and extractors. Very often we need a couple of injector/extractor 
to solve a given problem. 

In order to illustrate this situation, let us look at the MDA technical space. The 
main entity there is a model (a metamodel may be considered as a kind of model). A 
model contains very useful and focused information, but by itself it is very dull and 
has no much capability. If we want MDA models to be really useful we have to give 
them these capabilities. There are two ways to do this: either to build them in the 
MDA space or to find them in another space. In the latter case what we will have to 
provide is some set of projectors.  

An MDA model is a graph (non directed graph with labeled edge ends). Since 
there was no possibility to exchange MDA models, the OMG initiated a RFP called 
SMIF (Stream-based Model Interchange Format). The objective of SMIF was to find 
a serialization scheme so that any kind of MOF model could be exchanged by simple 
means (by mail, or a USB key, etc.). After some months of study, the group leading 
this initiative identified several solutions based on well known graph serialization 
algorithms. The solution was then to select and standardize some of these algorithms 
and to suggest building software extensions to handle these standards as part of the 
major CASE tools. This was the time when some people realized the importance that 
the XML TS was taking and the growing availability of XML tools in various 
industrial environments. Many people then realized that it would be economically 
much more interesting to define standard serialization in XML, i.e. that instead of 
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directly serializing graphs on text flow or binary streams, it was more interesting to 
serialize graphs as trees and the let the remainder of the work being handled in the 
XML TS. As a consequence a bidirectional projector was defined by the XMI 
convention. 

Each MDA projector has a specific goal, i.e. it consists in providing new facilities 
to models that are available in other TSs. XMI brings the capability of global model 
exchange to the MDA space and this capability is found in the XML space. Global 
model exchange means only the possibility to have batch-style of communication 
between tools. This is an interesting facility, but in many occasions it is not sufficient 
because we have to provide a fine grain access to model elements. XMI is of no use to 
do this. Here again the problem of adding new capabilities to models arose. Building 
intra-MDA tools for doing this was considered very costly. So, as part of the Java 
community process program, a standard projector with the Java technical space was 
defined under the name JSR #40. The capability to access models elements in MDA 
was given with the help of the Java TS. This projector is known today under the name 
JMI (Java Metadata Interface Specification [33]). 

As we may see, each projector has a specific purpose. In the UML standard, the 
diagram interchange part deals partially with the separation of content and 
presentation for MDA models. In order to help model presentation, specific tools 
could have been added to the MDA space, but with a high implementation cost. Here 
again a solution was found in the XML space, by using the SVG standard for scalable 
vector graphics. Although the solution is limited to only certain kind of models, here 
again we see the interest of using important investments of other TSs to bring 
economically and rapidly functionalities to a given space (here the MDA) with the 
help of projectors.  

Many other examples could be found showing the need for a very precise 
definition of the goal of any projector. For example, after the introduction of XMI, it 
was rapidly found that this projector was not bringing the facility of easy textual 
reading to the MDA space. Many solutions were possible, including applying XSLT 
transformation to XMI-serialized models to make them more usable for human 
operator (considering that XMI is sufficient for computer operators). Then the OMG 
decided to address this problem separately and a solution involving the EBNF space 
was defined under the name HUTN (Human Usable Textual Notation). HUTN offers 
three main benefits: (1) It is a generic specification that can provide a concrete 
language for any MOF model; (2) the HUTN languages can be fully automated for 
both production and parsing; (3) the HUTN languages are designed to conform to 
human-usability criteria. In the same spirit, OMG is today studying more general 
kinds of projectors between the MDA and the textual technical space (Model to Text 
RFP). 

So we can see all the gain that could be reaped from the homogeneous 
consideration of bridges between TSs with the help of generic projectors. There are 
many activities presently going on in this area with TSs like data base (SQL 
projectors, E/R diagram projectors), in the OS TS (Unix projectors), in the legacy 
technical spaces (Cobol, ADA, PL/1 projectors to name only a few of them), in the 
ontology TS, for example with Protégé, in the natural language processing TS for 
requirement engineering applications, in the semantic Web TS, etc. 
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4   Some Examples of Technical Spaces 

In this part, we give some rapid examples of TSs related to model engineering. 

4.1   The OMG MDA Technical Space 

We have already mentioned many of the characteristics of this MDA TS which was 
one of the first to explicitly state its clear foundation on some notion of concrete 
model. It should be noted that this TS borrowed much inspiration from the CDIF 
achievements as well as from the Microsoft OIM framework. CDIF and OIM are two 
examples of previous TSs, now extinct.  

A typical presentation of the OMG/MDA organization is shown in Fig. 11. This 
may be used to illustrate the various roles that UML is playing in the global picture.  

 

Fig. 11. Typical illustration of OMG MDA Organization 

There has been a lot of reorganization at OMG on the occasion of the move to 
UML 2.0. The idea was to achieve some simplification by taking this opportunity to 
align other standards as well (OCL 2.0, MOF. 2.0, XMI 2.0, etc.). The result may be 
considered as mitigated. For various reasons there have always been two camps at 
OMG, according to the role devoted to UML. For the MOF camp, UML is only one 
ordinary metamodel among many (CWM, SPEM, etc.) while for others UML has a 
special and central role in MDA; the latter view UML as a rather universal language 
covering most of the software engineering needs, either directly or through its profile 
extension mechanism. The two camps have made a working compromise stating that 
1) the UML conforms to MOF but also that 2) MOF is aligned on UML. Keeping the 
balance between these two political views has always been a complex exercise. The 
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fact that UML is separated in infrastructure and superstructure was a help in defining 
the alignment, but is not sufficient. MOF itself is now composed of two parts, EMOF 
(for essential MOF) and CMOF (for complete MOF). 

One sub-area of the MDA work at OMG is called ADM (Architecture-Driven 
Modernization) and deals with model-based reverse engineering and software 
modernization. In this very active area, the notion of TS projector between legacy 
spaces and the MDA space are of paramount importance. ADM mainly deals with the 
utilization of metamodeling techniques for recovery PIMs from PSMs corresponding 
to platform of the past.  

4.2   The EMF Technical Space 

In theory EMF (Eclipse Modeling Framework [17]) and OMG/MDA are aligned and 
should be considered as only one TS. As suggested in Fig. 2, MDA may be viewed as 
a set of standards while EMF should be an implementation based on these same 
standards. In practice this is not completely true and the two may be somewhat 
evolving independently. The M3 level in EMF is called ECORE (see Fig. 12), and 
corresponds approximately to EMOF mentioned above. Another view is to consider 
EMF as a sophisticated projection of MDA onto the Java TS, and to a lesser extent 
onto the XML TS. 

 

Fig. 12. The EMF ECore metametamodel 

4.3   The Microsoft DSL Tools Technical Space 

A general description of the concept of software factories has been presented in [20]. 
Starting from there, several sets of tools are being regularly released as beta-versions 
since December 2004. This allows us to understand in which direction the modeling 
activities are leading at Microsoft. 

In order to define a DSL toolkit for a specific purpose (e.g. for a business of 
deigning airports), one will proceed as follows: 
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 Define the 'object model' (abstract syntax or metamodel) of the language -- that 
is, the concepts and relationships you want to handle in it.  

 Define a graphical concrete syntax for the language -- the boxes, lines, etc that 
represent the concepts on-screen.  

 Create a graphical editor for the language that you will use to design a specific 
airport.  

 Develop code generators that will create software, configuration files, reports 
and other artifacts from the graphical model.  

The choice of Microsoft DSL Tools has been to map mainly to the XML technical 
Space for handling models and metamodels. Executability is provided by mapping to 
the Dot Net TS. The M3 level at Microsoft is left implicit, but could be reified 
somewhat as illustrated in Fig. 13. An operational bridge between EMF and Microsoft 
Software factories may be found in [12]. 

 

Fig. 13. A tentative to explicit the M3 level of Microsoft DSL Tools (simplified) 

4.4   Other Technical Spaces 

There are plenty of other technical spaces besides the three MDE ones that we have 
just briefly introduced. A list of these spaces is obviously not realistic here. However 
it is important to recognize them when they are involved in relation to MDE. The 
major one is probably the XML Document space that has taken considerable 
importance in the last decade. We have seen how the OMG has established links with 
this space through standards like XMI. This is even more important in Microsoft DSL 
Tools that are making more usage of XML mappings. 

Another very important technical space is programming languages, e.g. Java. We 
can even say that EMF is mainly concerned with the bridging of MDA and Java. This 
had previously been achieved with JMI in other environments like MDR/NetBeans, 
but to a much less ambitious scale. 

An interesting reading about technical spaces in the domain of web services is [21]. 
Although not naming explicitly the concept of technical space, this paper considers 
three complementary ones, namely objects, SQL and XML. The author notices that 
each of these solutions has strengths and weaknesses when applied to the inside and 
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outside of web service boundary. He then concludes that the strength of each of these 
solutions in one area is derived from essential characteristics underlying its weakness 
in the other area. In other words, the multiplicity of technical space is not only a fact 
of life but it has also many positive effects. 

Bridging to another technical space is interesting if it has something interesting to 
bring. We have already seen the advantage of using XML or Java instead of 
reinventing the wheel. 

Interesting bridges could also be built with ontology engineering and web 
semantic. Some functionalities may be easier to provide in a TS with a M3 based on 
OWL than on the MOF. For example name management seems superior in OWL 
where a given object may be referred by several different names. Also in OWL the 
possibility to infer from the properties of an individual that it is a member of a class 
may be of interest. Through this example we understand more clearly the fundamental 
relations between representation and reasoning. Reasoning on a model is usually 
considered a more complex operation than just querying this model. It would be 
unwise to try implementing in the MDA TS all the reasoning facilities available in the 
ontology engineering or description logic TS for example. It seems much more 
valuable to build specific projectors when needed. 

Having surveyed the basic MDE principles and having placed them in the context 
of multiple TSs, it remains now to prove that this approach may lead to real and 
usable implementations. We will use the example of AMMA (ATLAS Model 
Management Architecture), a platform built in our team to demonstrate the feasibility 
of these model-centric approaches to software engineering, system engineering, and 
data engineering. 

5   Architectural Style for an MDE Platform 

This section will describe an architectural style for MDE composed of four 
functional blocks illustrated with prototypes running in the AMMA platform: 

• Model transformation (ATL) 
• Model weaving (AMW) 
• General model management (AM3) 
• Model projection to/from other technical spaces (ATP) 

This architectural style and the feasibility of its implementation will be illustrated by 
the description of the AMMA platform. The architecture of the current EMF-based 
AMMA implementation is described in Fig. 14. The transformation tool of AMMA, 
ATL, uses the basic features of EMF to handle both source and target models and 
metamodels, as well as the transformation model and metamodel. An Integrated 
Development Environment (IDE) has been developed for ATL on top of Eclipse. 
Based on EMF, it makes use of many other features, such as the code editor and the 
code debugging frameworks. AMW, the AMMA model weaving tool, uses more 
advanced EMF features. Since it is built as a model editor, AMW can benefit from 
editing domains facilities for complex model handlings (including undo-redo). It also 
reuses some components of the Eclipse default views to display models. 



54 J. Bézivin 

 

Eclipse

EMF

ATL IDE

ATL engine ATP

AM3 AMW

Eclipse

EMF

ATL IDE

ATL engineATL engine ATPATP

AM3 AMW

 

Fig. 14. Architecture of the AMMA platform 

Eclipse is mostly used as an IDE for software development. As such, it includes 
facilities enabling to navigate the code, to keep track of the files that need rebuilding, 
etc. The megamodel tool (AM3) is used as a model-oriented extension of these 
abilities. As a matter of fact, using the relations between models (such as the source 
and target relations between a transformation model and its source and target 
metamodels), and between models and tools (such as those provided by ATP), AM3 
makes it possible to easily carry on complex weaving, transformation and projection 
tasks. 

5.1   MMA: A Model Engineering Platform 

AMMA has both local and distributed implementations and is based on four blocks 
(Fig. 15) providing a large set of model processing facilities: 

• the Atlas Transformation Language (ATL) defines model transformation 
facilities; 

• the Atlas ModelWeaver (AMW) makes it possible to establish links between the 
elements of two (or more) different models; 

• the Atlas MegaModel Management (AM3) defines the way the metadata is 
managed in AMMA (registry on the models, metamodels, tools, etc.); 

• the Atlas Technical Projectors (ATP) defines a set of injectors/extractors 
enabling to import/export models from/to foreign technical spaces (Java classes, 
relational models, etc.). 

AMMA

ATL AMWAM3 ATP

AMMAAMMA

ATL AMWAM3 ATP
 

Fig. 15. The AMMA platform 
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5.2   ATL: Transforming Models 

5.2.1   ATL Presentation 
ATL is a model transformation language, having its abstract syntax defined using a 
metamodel. This means that every ATL transformation is in fact a model, with all the 
properties that are implied by this. Fig. 16 provides the scheme of the transformation 
of a model Ma (conforming to MMa) into a model Mb (conforming to MMb) based on 
the Mt transformation (which itself conforms to ATL transformation language). 
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Ma Mb
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MMaMMa
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conformsTo

conformsTo

Transformation  

Fig. 16. An ATL transformation 

What appears on Fig. 16 is the postulate of the existence of this common family of 
model transformation languages. This is exactly what OMG is presently trying to 
define through MOF/QVT. A given transformation operation is thus represented as 
follows: 

Mb ← f (MMa, MMb, Mt, Ma) 

This means that a new target model Mb based on metamodel MMb is obtained 
from the source model Ma based on metamodel MMa, by applying a transformation 
Mt based on the standard transformation language.  

5.2.2   The ATL Metamodel 
The ATLAS transformation language is defined by the way of a metamodel (Fig. 16) 
taking inspiration from the OCL 2.0, which may be considered here as an assertion 
and as a navigation language at the same time.  

ATL transformations are stored in QVTUnits. QVTUnits are composed of 
QVTOperators, which are composed of TransformationDescription. A 
TransformationDescription is an abstract class, which has two sub classes: Action and 
Context. 

Context: The context is used to store the variables and models manipulated by the 
transformation. 
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Action: The Action class is the element of the language that will describe the 
action needed to perform a transformation. The actions have to be executed in specific 
order, which is defined in the position attribute. This notion of order is necessary. We 
cannot for example set an attribute to a class if the class has not been created.  

There are three types of Actions: CreateInstance, PropertyOperation, 
AddTransientLink. 

The rest of ATL metamodel is the description of Expression sub-classes. ATL 
expression classes are a copy of a part of OCL Expression sub classes. An important 
extension has been made: the QueryTransientLinkExp that is a sub-class of CallExp. 
It is used to navigate through the transient links. 

5.2.3   An Example of a Transformation in ATL 
Several examples of model transformation in ATL are provided as an open source 
contribution on the Eclipse/GMT Website. This is a tentative to build a first library of 
reusable model transformations. Among the fifty examples currently available, we 
chose one particular for illustrative purpose here: http://www.eclipse.org/gmt/atl/ 
atlTransformations/#Java2Table. The complete code and documentation is available 
from the Web site. This example aims to compute a static call graph from a Java 
program and to present it in a tabular way (in an Excel spreadsheet or in an HTML 
Table). The following comments on this example are typical of ATL transformations. 

a) Although a conventional transformation from UML 2.1 to UML 2.1 (e.g. 
refactoring) with source models and metamodels in XMI, target models and 
metamodels in XMI may be written in ATL without much difficulties, many 
examples are usually more diverse and more specific. 

b) Here we describe in the source metamodel only a small subset of Java 
programs. More precisely we consider that a Java program is composed of class 
definitions, each one being composed of methods definitions and each method 
definition in turn being composed of a number of method calls. The other 
characteristics of a Java program are not captured by this metamodel. 

c) The process of practically getting this Java metamodel expressed in XMI is 
rather complex, besides the fact that XMI exists in many non compatible 
versions. As a standard procedure we should define a specific UML class 
diagram with a standard tool like Poseidon, then get the corresponding XMI 
output file and input it to a "model promotion" tool like UML2MOF available 
in the MD/NetBeans tool suite. The resulting XMI output file could serve in the 
transformation as the definition of the java metamodel. As we can see this 
procedure is rather cumbersome. As an alternative we have defined a DSL for 
specifying metamodels called KM3 (Kernel MetaMetaModel [2]). This is a 
textual language with a Java-like syntax and basic support available in the 
Eclipse/GMT project, for example XMI conversion tools. ATL accepts the 
source and target metamodels in KM3. 

d) As already noticed, the source metamodel does not cover much details of the 
Java syntax and this is an advantage on using a Java metamodel corresponding 
for example to the full Java grammar. We see here one additional 
characteristics of model transformation: the metamodels should be tailored to 
the transformation task at hand. Using an over-dimensioned source Java 
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metamodel would have made the transformation more complex and less secure. 
The metamodels play the role of type and the models of variables. It is of high 
importance to use the most accurate metamodel for reasons of clarity and 
reliability of the transformation. A theoretical scheme would allow building a 
transformation μ taking as input a metamodel Ms and a transformation  and 
producing as output a new metamodel Mt, reduction of Ms to the only exact 
needs of transformation . 

e) Now that we have discussed the source metamodel characteristics, we have to 
face the real situation that Java programs are naturally and usually expressed as 
plain source text programs and not as XMI representations. As a matter of fact, 
there is a very restricted number of information naturally expressed in standard 
XMI in the real world. So what we have to consider here is a bridge between 
the Java and the MDA TS, i.e. a projection. We suppose that such a projection 
exists in the ATL projection library (see ATP below). However if we look at 
the actual Java2Table example, we realize that such projections have not been 
realized directly but instead that the author found more convenient to cross 
another TS (XML) to achieve the transformation. Among various reasons for 
this decision, the existence of the JavaML DTD that allowed to consider all the 
class definitions in one single file. This is an example of a possible 
implementation choice. 

f) Now that we have discussed the source model, metamodel and projector we 
may turn our attention to the corresponding target items. The first work is to 
define a metamodel for Excel, obviously not provided with the tool. Here again 
we notice that we don't need a full metamodel but a very simplified one, 
tailored to our transformation needs. Formulas are not needed but a Spreadsheet 
could be considered as composed of Rows, each being composed of a Cell with 
a contained value. 

g) Once we have defined the target metamodel, we need to build the 
corresponding projectors. This could be implemented with specific MS tools 
like Visual Basic or more likely again through the XML import/export facilities 
available in the MS Office suite. In the process of doing this we realize that the 
target metamodel could as well correspond to HTML or XHTML tables. As a 
consequence this is the final implementation choice in the provided example. 
More precisely the target metamodel is an abstract definition of tabular 
presentation. The result of this transformation could then be chained to another 
transformation generating specific XHTML or Excel tables, with the 
metamodels specific to these tools. Of course chains of transformations are 
important in many practical situations. 

5.3   AMW: Weaving Models 

Model weaving operations are performed between either metamodels (two or more), 
or models. They aim to specify the links, and their associated semantics, between 
elements of source and target models. Concerning the set of links to be generated, the 
following issues may be considered: 
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• this set of links cannot be automatically generated because it is often based on 
human decisions. The generation can however be partially automated by means 
of heuristics; 

• it should be possible to record this set of links as a whole, in order to use it later 
in various contexts; 

• it should be possible to use this set of links as an input to automatic or semi-
automatic tools. 
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Fig. 17. The model weaving scheme 

As a consequence, we come to the conclusion that a model weaving operation 
produces a precise model WM. Like other models, this should conform to a specific 
metamodel WMM. The produced weaving model relates to the source and target 
models LeftM and RightM, and thus remains linked to these models in a megamodel 
registry. 

Each link element of the produced weaving model WM has to be typed by an 
element of a given WMM metamodel. There is no unique type of link. Link types 
should provide weaving tools with useful information. Even if some links contain 
textual descriptions, these are valuable for tools supporting documentation, manual 
refinements or applying heuristics. 

One may assume that there is no standard metamodel for weaving operations since 
most developers define their own. However, we suppose there is a stub weaving 
metamodel, and that this stub is extended by specific metamodel extensions. Thus, a 
given weaving metamodel may be expressed as an extension of another weaving 
metamodel. This allows building a general weaving tool able to generically deal with 
weaving tasks. Fig. 17 describes a simple model weaving scheme in which an explicit 
weaving link (of type Concatenation) associates two source elements (FirstName and 
LastName) with an only target element (Name). 
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Mapping heterogeneous data from one representation to another is a central 
problem in many data-intensive applications. Examples can be found in different 
contexts such as schema integration in distributed databases, data transformation for 
data warehousing, data integration in mediator systems [25], data migration from 
legacy systems [14], ontology merging [18], schema mapping in P2P systems [22], 
workflow integration [27], mapping between context and ontologies [16]. 

A typical data mapping specifies how data from one source representation (e.g. a 
relational schema) can be translated to a target representation (e.g. a XML schema). 
Although data mappings have been studied independently in different contexts, there 
are two main issues involved. The first one is to discover the correspondences 
between data elements that are semantically related in the source and target 
representations. This is called schema matching in schema integration [3] and many 
techniques have been proposed to (partially) automate this task, e.g. using neural 
networks. After the correspondences have been established, the second issue is to 
produce operational mappings that can be executed to perform the translation. 
Operational mappings are typically declarative, e.g. view definitions or SQL-like 
queries. Creating and managing data mappings can be very complex and time-
consuming if done manually. Recent work in schema integration has concentrated on 
the efficient management of data mappings. For instance, Clio [26] provides 
techniques for the automatic generation of operational mappings from correspond-
dences obtained from the user or a machine learning technique. ToMAS [34] also 
provides techniques for the automatic generation of operational mappings as well as 
their consistency management while schemas evolve. This work is significant as it 
can be the basis to general purpose data integration tools.  

5.4   AM3: Global Model Management 

The Atlas MegaModel Management tool, AM3, is an environment for dealing with 
models or metamodels, together with tools, services and other global entities, when 
considered as a whole. For each platform, we suppose that there is an associated 
megamodel defining the metadata associated to this platform. Within the content of a 
given platform (local or global), the megamodel records all available resources. One 
may also refer to these resources as "model components" [10]. The megamodel can be 
viewed as a model which elements represent and refer to models and metamodels 
[13]. Represented as models, available tools, services, and services parameters are 
also managed by the megamodel. There are plenty of events that may change the 
megamodel, like the creation or suppression of a model, or a metamodel, etc. A 
megamodel is associated with a specific "scope" and conforms to a specific 
metamodel. 

5.5   ATP: Projection Between Technical Spaces 

The Atlas Technical Projectors, ATP, define a set of injectors and extractors, which 
can be seen as import and export facilities between the model engineering Technical 
Space and other TSs (databases, flat files, XML, etc). Indeed, a very large amount of 
pre-existing data that is not XMI compliant would greatly benefit from model 
transformation. In order to be processed by a model engineering platform, this data 
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needs injection from its TS to the model engineering TS. The need for extraction is 
also quite important: many existing tools do not read XMI. A simple example is the 
Java compiler. What we need here is code generation, which may be seen as a specific 
case of model extraction. Many other TSs require both injectors and extractors: 
database systems provide another example in which database schemes have to be 
generated from model definitions. 

5.6   Conclusions 

What appear in this presentation are the high complementarities between all four 
presented functional blocks (ATL, AMW, AM3, and ATP). There are plenty of 
applications that make use of these four kinds of functionalities at the same time. 

6   Conclusions 

We have presented in this paper our definition of MDE basic principles and our view 
of an MDE implementation architectural style. The basic principle on which this work 
is based (Models as first class entities) is common to many current research 
communities (Model Management, Model Integrated Computing, etc.) and similar 
goals and means may be found in other TSs. This is summarized in Fig. 18. 

 

Fig. 18. Summarizing the Basic Principles 

We have taken here a broad view of model engineering as encompassing not only 
the MDA™ OMG proposal or the Microsoft SoftwareFactories/DSL view, but also 
other approaches like Model Integrated Computing, Generative Programming, Model 
Management and many more. We distinguished the three levels of principles, 
standards, and tools to facilitate the discussion. We suggested the idea that there may 
exist a common set of principles that could be mapped to different implementation 
contexts through the help of common standards. We have illustrated our claim with 
AMMA, an architectural organization that is currently mapped onto the EMF 
extension of the Eclipse platform.  



 Model Driven Engineering: An Emerging Technical Space 61 

 

One contribution of this work has been to propose a precise and minimal definition 
of a conceptual MDE technical space. This space may be considered as a general 
graph where partitions are composed of model, metamodel and metametamodel 
entities. We have not committed here to a particular kind of graphs. The OMG/MOF 
graphs, the EMF/Ecore graphs or the Microsoft/SoftwareFactories/DSL graphs are 
not completely identical but we believe these systems share one common set of 
principles and definitions corresponding to the MDE abstract global typing system 
presented here. As a consequence this work should be useful not only to relate 
different technical spaces like XML, Grammarware, etc., but also to compare variants 
of the MDE space. 

One contribution of this work is the AMMA conceptual architecture, seen as an 
intermediary level between model engineering basic principles and executable 
systems running on operational platforms like EMF/Eclipse. The main advantage of 
proceeding in this way is that we may more clearly evaluate the gap between 
principles and implementation. From our initial experimentations, we came to the 
conclusion that building a model engineering platform is much more demanding than 
simply providing a RPC-like mechanism for allowing tools to exchange models in 
serialized format (e.g. XMI-based), with the corresponding services and 
protocols (e.g. Web Service-based). The present state of AMMA with the four 
functional blocks is only one step in this direction and still needs many extensions. 

There are many variants of model engineering. Our attitude has been to find the set 
of basic principles common to all the dominant model engineering approaches and to 
make them explicit. We are then in a position to clearly separate the principles, the 
standards, and the tools levels. 

One of the contributions of our approach is also to take explicitly into account the 
notion of technical space. Instead of building a lot of different ad-hoc conversions 
tools (modelToText, textToModel, ontologyToModel, modelToOntology, 
XMLToText, textToXML, modelToSQL, SQLToModel, etc.), we have proposed, 
with the notion of projectors (injectors or extractors), a general concept that may be 
used in various situations. These projectors can be selected as either front-ends or 
back-ends for classical transformations. 
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Appendix: Acronyms 

Due to the initial normative aspect of the field, we have used an important number of 
acronyms in this document. We provide below a list of more common ones with their 
definitions. 

 

ADM Architecture-Driven Modernization 
AS Action Semantics  
CDIF CASE Data Interchange format 
CORBA Common Object Request Broker Architecture 
CIM Computation Independent Model 
CWM Common Warehouse Metadata 
DTD Document Type Definition 
EAI Enterprise Application Integration 
EBNF Extended Backus-Naur Form 
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EDOC Enterprise Distributed Object Computing 
EJB Enterprise Java Beans 
HUTN  Human Usable Textual Notation 
IDL Interface Definition Language  
JSR Java Specification Request 
JMI Java MetaData Interface Specification 
MDA Model Driven Architecture (OMG™) 
MDE Model Driven Engineering  
MDD Model Driven Development (OMG™) 
MDSD Model Driven Software Development 
MDSE Model Driven Software Engineering 
MIC Model Integrated computing 
MOF Meta-Object Facility 
OCL Object Constraint Language 
OIM Open Information Model 
OMA Object Management Architecture 
OMG  Object Management Group 
PIM Platform Independent Model 
PSM  Platform specific Model 
RFP Request for Proposal 
RAS Reusable Asset Specification 
RUP Rational Unified Process 
SMIF Stream-based Model Interchange Format 
SPEM Software Process Engineering Metamodel 
TS Technical Space 
UML Unified Modeling Language (OMG™) 
XMI XML Model Interchange  
XML eXtensible Markup Language 
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