Publikationen

Für eine aktualisierte Liste besuchen Sie bitte mein Google Scholar.

Meine Doktorarbeit: Multi-modal 3D Cochlea Images Registration, Fusion, Segmentation and Analysis.

Zeitschriften:‬

  • A‭ l-Dhamari et al, (2019). Automatic Detection of Cervical Spine Ligaments Origin and Insertion‬‭Points. IEEE 16 thInternational Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 48–51‬.
  • Al-Dhamari et al, (2024). Synthetic datasets for open software development in rare disease research. Orphanet J Rare Dis 19, 265 (2024). https://doi.org/10.1186/s13023-024-03254-2
  • Al-Dhamari et al, (2023). Automatic Cochlea Multimodal 3D Image Segmentation And Analysis‬‭Using Atlas-model-based Method. Cochlea Implant International Journal, 2023,DOI:‬‭10.1080/14670100.2023.2274199‬‭.‬
  • Waldeck et al, (2022). New ultra-fast algorithm for cochlear implant misalignment detection,‬‭ European Journal of Radiology, Volume 151, 2022, 110283, ISSN 0720-0013,‬‭ https://doi.org/10.1016/j.ejrad.2022.110283‬.
  • Al-Dhamari et al, (2022). Automatic intra-subject registration and fusion of multimodal cochlea‬‭3D clinical images. PLOS ONE, 17(3), e0264449.‬‭ https://doi.org/10.1371/journal.pone.0264449‬.
  • Helal et al, (2021) Cone-beam CT versus Multidetector CT in Postoperative Cochlear Implant‬‭Imaging: Evaluation of Image Quality and Radiation Dose. American Journal Of Neuroradiology‬‭(AJNR),42(2021), Nr. 2, S. 362–367.‬DOI: https://doi.org/10.3174/ajnr.A6894
  • Adwan et al (2013)."Utilizing an enhanced cellular automata model for data mining". (2013)‬‭International Review on Computers and Software (IRECOS). 8 (2013), Nr. 2. S. 435-443.‬
  • Dalhoum et al, (2012). Digital image scrambling using 2D cellular automata". (2012) IEEE‬‭Multimedia Journal. 19 (2012), Nr.4, S. 28-36. doi: 10.1109/MMUL.2011.54

Konferenzen:

  • A‭ l-Dhamari et al, (2019). Automatic Detection of Cervical Spine Ligaments Origin and Insertion‬‭Points. IEEE 16 thInternational Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 48–51‬.
  • ‭Al-Dhamari et al, (2018). Automatic Cochlear Length and Volume Size Estimation. In: Stoyanov,‬‭Danail et. al. (Hrsg.). OR 2.0 Context Aware Operating Theaters, Computer Assisted Robotic‬‭Endoscopy, Clinical Image Based Procedures, and Skin Image Analysis (MICCAI2018). Springer‬‭International Publishing, 2018. ISBN 978–3–030–01201–4, S. 54–61‬.
  • Al-Dhamari et al, (2018).Automatic Multimodal Cervical Spine Image Atlas Segmentation.‬‭Bildverarbeitung für die Medizin 2018. In-formatik aktuell. (2018) Springer Vieweg, Berlin,‬‭ Heidelberg. S. 303-308.‬
  • ‭(Talk) Al-Dhamari (2017). Automatic Cochlea Segmentation Using Diffusion Snakes. 15th‬‭International Symposium on Cochlear Implants in Children, July 26–29, (2017), San Francisco,‬‭USA‬.
  • (Talk) Al-Dhamari et al, (2017). ACIR: automatic cochlea image registration. Proceedings of SPIE‬‭Medical Imaging 2017, Image Processing, Orlando, USA. 10133 (2017), Nr. 10, S. 47-67‬‭.
  • (Talk) Al-Dhamari (2016). Automatic Multimodal Registration and Fusion of 3D Human Cochlea‬‭Images. 14 th International Conference on Cochlear Implants, May 11-14, (2016), Toronto, Canada‬.
  • Dalhoum et al, (2010). fMRI brain data classification using cellular automata". (2010) Proceedings‬‭of the 10 th international conference on applied informatics and communications. World‬‭Scientific and Engineering Academy and Society (WSEAS,) S. 348-352‬.
  • ‭Sleit et al, (2010). An edge detection algorithm for online image analysis". (2010). Proceedings of‬‭the 2010 American conference on Applied mathematics, S.250-254‬.
  • Sleit et al, (2010). An enhanced sub image matching algorithm for binary images. (2010)‬‭American Conf. on Applied Mathematics, S. 565-569‬.‭
  • ‭Sleit et al, (2009). Efficient enhancement on cellular automata for data mining. (2009)‬‭Proceedings of the 13 th WSEAS international conference on Systems, S. 616-620‬.