Publikationen
Für eine aktualisierte Liste besuchen Sie bitte mein Google Scholar.
Meine Doktorarbeit: Multi-modal 3D Cochlea Images Registration, Fusion, Segmentation and Analysis.
Zeitschriften:
- A l-Dhamari et al, (2019). Automatic Detection of Cervical Spine Ligaments Origin and InsertionPoints. IEEE 16 thInternational Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 48–51.
- Al-Dhamari et al, (2024). Synthetic datasets for open software development in rare disease research. Orphanet J Rare Dis 19, 265 (2024). https://doi.org/10.1186/s13023-024-03254-2
- Al-Dhamari et al, (2023). Automatic Cochlea Multimodal 3D Image Segmentation And AnalysisUsing Atlas-model-based Method. Cochlea Implant International Journal, 2023,DOI:10.1080/14670100.2023.2274199.
- Waldeck et al, (2022). New ultra-fast algorithm for cochlear implant misalignment detection, European Journal of Radiology, Volume 151, 2022, 110283, ISSN 0720-0013, https://doi.org/10.1016/j.ejrad.2022.110283.
- Al-Dhamari et al, (2022). Automatic intra-subject registration and fusion of multimodal cochlea3D clinical images. PLOS ONE, 17(3), e0264449. https://doi.org/10.1371/journal.pone.0264449.
- Helal et al, (2021) Cone-beam CT versus Multidetector CT in Postoperative Cochlear ImplantImaging: Evaluation of Image Quality and Radiation Dose. American Journal Of Neuroradiology(AJNR),42(2021), Nr. 2, S. 362–367.DOI: https://doi.org/10.3174/ajnr.A6894
- Adwan et al (2013)."Utilizing an enhanced cellular automata model for data mining". (2013)International Review on Computers and Software (IRECOS). 8 (2013), Nr. 2. S. 435-443.
- Dalhoum et al, (2012). Digital image scrambling using 2D cellular automata". (2012) IEEEMultimedia Journal. 19 (2012), Nr.4, S. 28-36. doi: 10.1109/MMUL.2011.54
Konferenzen:
- A l-Dhamari et al, (2019). Automatic Detection of Cervical Spine Ligaments Origin and InsertionPoints. IEEE 16 thInternational Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 48–51.
- Al-Dhamari et al, (2018). Automatic Cochlear Length and Volume Size Estimation. In: Stoyanov,Danail et. al. (Hrsg.). OR 2.0 Context Aware Operating Theaters, Computer Assisted RoboticEndoscopy, Clinical Image Based Procedures, and Skin Image Analysis (MICCAI2018). SpringerInternational Publishing, 2018. ISBN 978–3–030–01201–4, S. 54–61.
- Al-Dhamari et al, (2018).Automatic Multimodal Cervical Spine Image Atlas Segmentation.Bildverarbeitung für die Medizin 2018. In-formatik aktuell. (2018) Springer Vieweg, Berlin, Heidelberg. S. 303-308.
- (Talk) Al-Dhamari (2017). Automatic Cochlea Segmentation Using Diffusion Snakes. 15thInternational Symposium on Cochlear Implants in Children, July 26–29, (2017), San Francisco,USA.
- (Talk) Al-Dhamari et al, (2017). ACIR: automatic cochlea image registration. Proceedings of SPIEMedical Imaging 2017, Image Processing, Orlando, USA. 10133 (2017), Nr. 10, S. 47-67.
- (Talk) Al-Dhamari (2016). Automatic Multimodal Registration and Fusion of 3D Human CochleaImages. 14 th International Conference on Cochlear Implants, May 11-14, (2016), Toronto, Canada.
- Dalhoum et al, (2010). fMRI brain data classification using cellular automata". (2010) Proceedingsof the 10 th international conference on applied informatics and communications. WorldScientific and Engineering Academy and Society (WSEAS,) S. 348-352.
- Sleit et al, (2010). An edge detection algorithm for online image analysis". (2010). Proceedings ofthe 2010 American conference on Applied mathematics, S.250-254.
- Sleit et al, (2010). An enhanced sub image matching algorithm for binary images. (2010)American Conf. on Applied Mathematics, S. 565-569.
- Sleit et al, (2009). Efficient enhancement on cellular automata for data mining. (2009)Proceedings of the 13 th WSEAS international conference on Systems, S. 616-620.